Use properties of logarithms to condense the following logarithmic


Question 21 of 40

0.0/ 2.5 Points

Write the contrive of the particular ingredient dissection of the moderate indication. 
7x - 4/x2 - x - 12

 

 

A. 24/7(x - 2) + 26/7(x + 5)

 

B. 14/7(x - 3) + 20/7(x2 + 3)

 

C. 24/7(x - 4) + 25/7(x + 3)

 

D. 22/8(x - 2) + 25/6(x + 4)

Question 22 of 40

0.0/ 2.5 Points

Solve each equation by the individualization manner.

x2 + y2 = 25 
(x - 8)2 + y2 = 41

 

 

 

A. {(3, 5), (3, -2)}

 

B. {(3, 4), (3, -4)}

 

C. {(2, 4), (1, -4)}

 

D. {(3, 6), (3, -7)}

Question 23 of 40

0.0/ 2.5 Points

Find the quadratic operation y = ax2 + bx + c whose graph passes through the absorbed points.

(-1, 6), (1, 4), (2, 9)

 

 

A. y = 2x2 - x + 3

 

B. y = 2x2 + x2 + 9

 

C. y = 3x2 - x - 4

 

D. y = 2x2 + 2x + 4

Question 24 of 40

0.0/ 2.5 Points

Solve the subjoined arrangement by the supply manner.

{x + y = 4 
{y = 3x

 

 

A. {(1, 4)}

 

B. {(3, 3)}

 

C. {(1, 3)}

 

D. {(6, 1)}

Question 25 of 40

0.0/ 2.5 Points

Solve the subjoined arrangement.

x + y + z = 6 
3x + 4y - 7z = 1 
2x - y + 3z = 5

 

 

 

A. {(1, 3, 2)}

 

B. {(1, 4, 5)}

 

C. {(1, 2, 1)}

 

D. {(1, 5, 7)}

Question 26 of 40

2.5/ 2.5 Points

Solve the subjoined arrangement.

 

 

 

A. {(2, -1)}

 

B. {(1, 4)}

 

C. {(2, -5)}

 

D. {(1, -3)}

Question 27 of 40

0.0/ 2.5 Points

Solve the subjoined arrangement by the supply manner.

{x + 3y = 8 
{y = 2x - 9

 

 

A. {(5, 1)}

 

B. {(4, 3)}

 

C. {(7, 2)}

 

D. {(4, 3)}

Question 28 of 40

0.0/ 2.5 Points

Solve each equation by either supply or individualization manner.

x2 + 4y2 = 20 
x + 2y = 6

 

 

 

A. {(5, 2), (-4, 1)}

 

B. {(4, 2), (3, 1)}

 

C. {(2, 2), (4, 1)}

 

D. {(6, 2), (7, 1)}

Question 29 of 40

0.0/ 2.5 Points

Find the quadratic operation y = ax2 + bx + c whose graph passes through the absorbed points.

(-1, -4), (1, -2), (2, 5)

 

 

A. y = 2x2 + x - 6

 

B. y = 2x2 + 2x - 4

 

C. y = 2x2 + 2x + 3

 

D. y = 2x2 + x - 5

Question 30 of 40

0.0/ 2.5 Points

Write the particular ingredient dissection for the subjoined moderate indication.

x + 4/x2(x + 4)

 

 

A. 1/3x + 1/x2 - x + 5/4(x2 + 4)

 

B. 1/5x + 1/x2 - x + 4/4(x2 + 6)

 

C. 1/4x + 1/x2 - x + 4/4(x2 + 4)

 

D. 1/3x + 1/x2 - x + 3/4(x2 + 5)

Question 31 of 40

0.0/ 2.5 Points

Solve the subjoined arrangement by the individualization manner.

{2x + 3y = 6 
{2x – 3y = 6

 

 

A. {(4, 1)}

 

B. {(5, 0)}

 

C. {(2, 1)}

 

D. {(3, 0)}

Question 32 of 40

2.5/ 2.5 Points

Write the particular ingredient dissection for the subjoined moderate indication.

1/x2 – c2 (c ≠ 0)

 

 

A. 1/4c/x - c - 1/2c/x + c

 

B. 1/2c/x - c - 1/2c/x + c

 

C. 1/3c/x - c - 1/2c/x + c

 

D. 1/2c/x - c - 1/3c/x + c

Question 33 of 40

0.0/ 2.5 Points

Percontrive the hanker analysis and transcribe the particular ingredient dissection of the rest engagement. 

x5 + 2/x2 - 1

 

 

A. x2 + x - 1/2(x + 1) + 4/2(x - 1)

 

B. x3 + x - 1/2(x + 1) + 3/2(x - 1)

 

C. x3 + x - 1/6(x - 2) + 3/2(x + 1)

 

D. x2 + x - 1/2(x + 1) + 4/2(x - 1)

Question 34 of 40

0.0/ 2.5 Points

Write the particular ingredient dissection for the subjoined moderate indication. 

x2 – 6x + 3/(x – 2)3

 

 

A. 1/x – 4 – 2/(x – 2)2 – 6/(x – 2)

 

B. 1/x – 2 – 4/(x – 2)2 – 5/(x – 1)3

 

C. 1/x – 3 – 2/(x – 3)2 – 5/(x – 2)

 

D. 1/x – 2 – 2/(x – 2)2 – 5/(x – 2)3

Question 35 of 40

2.5/ 2.5 Points

On your present recreation, you succeed distribute berth among big recourses and weak inns. Let x resemble the reckon of dimnesss late in big recourses. Let y resemble the reckon of dimnesss late in weak inns. 

Write a arrangement of inequalities that models the subjoined conditions: 

You omission to arrive at meanest 5 dimnesss. At meanest one dimness should be late at a big recourse. Big recourses middle $200 per dimness and weak inns middle $100 per dimness. Your budget permits no past than $700 for berth.

 

 

A.

y ≥ 1 
x + y ≥ 5
x ≥ 1 
300x + 200y ≤ 700

 

B.

y ≥ 0
x + y ≥ 3 
x ≥ 0 
200x + 200y ≤ 700

 

C.

y ≥ 1
x + y ≥ 4
x ≥ 2 
500x + 100y ≤ 700

 

D.

y ≥ 0
x + y ≥ 5
x ≥ 1 
200x + 100y ≤ 700

Question 36 of 40

0.0/ 2.5 Points

Solve each equation by the supply manner.

y2 = x2 - 9 
2y = x – 3

 

 

 

A. {(-6, -4), (2, 0)}

 

B. {(-4, -4), (1, 0)}

 

C. {(-3, -4), (2, 0)}

 

D. {(-5, -4), (3, 0)}

Question 37 of 40

0.0/ 2.5 Points

Percontrive the hanker analysis and transcribe the particular ingredient dissection of the rest engagement. 

x4 – x2 + 2/x3 - x2

 

 

A. x + 3 - 2/x - 1/x2 + 4x - 1

 

B. 2x + 1 - 2/x - 2/x + 2/x + 1

 

C. 2x + 1 - 2/x2 - 2/x + 5/x - 1

 

D. x + 1 - 2/x - 2/x2 + 2/x - 1

Question 38 of 40

0.0/ 2.5 Points

Write the particular ingredient dissection for the subjoined moderate indication.

6x - 11/(x - 1)2

 

 

A. 6/x - 1 - 5/(x - 1)2

 

B. 5/x - 1 - 4/(x - 1)2

 

C. 2/x - 1 - 7/(x - 1)

 

D. 4/x - 1 - 3/(x - 1)

Question 39 of 40

2.5/ 2.5 Points

Many elevators accept a compatability of 2000 pounds. 

If a cadet middles 50 pounds and an adult 150 pounds, transcribe an imparity that describes when x cadetren and y adults succeed motive the elevator to be overloaded.

 

 

A. 50x + 150y > 2000

 

B. 100x + 150y > 1000

 

C. 70x + 250y > 2000

 

D. 55x + 150y > 3000

Question 40 of 40

0.0/ 2.5 Points

Solve each equation by the supply manner.

x2 - 4y2 = -7 
3x2 + y2 = 31

 

 

 

A. {(2, 2), (3, -2), (-1, 2), (-4, -2)}

 

B. {(7, 2), (3, -2), (-4, 2), (-3, -1)}

 

C. {(4, 2), (3, -2), (-5, 2), (-2, -2)}

 

D. {(3, 2), (3, -2), (-3, 2), (-3, -2)}