see attached
Textbook
Chapter 4
Overview
Think about a recent patient that you have provided nursing care. How can the health history relate to clinical prevention for that specific patient? How can you as the nurse advocate for your patient to receive effective, efficient, cost-effective and equitable care?
References:
· Initial Post: Minimum of two (2) total references: one (1) from required course materials and one (1) from peer-reviewed references.
Words Limits
· Minimum 200 words excluding references (approximately 1.5 page)
Physical Examination & Health Assessment
8TH EDITION
CAROLYN JARVIS, PhD, APRN, CNP
Professor of Nursing
Illinois Wesleyan University
Bloomington, Illinois
and
Family Nurse Practitioner
Bloomington, Illinois
With Ann Eckhardt, PhD, RN
Associate Professor of Nursing
Illinois Wesleyan University
Bloomington, Illinois
Original Illustrations by Pat Thomas, CMI, FAMI
East Troy, Wisconsin
2
Table of Contents
Cover image
Title Page
Chapter Organization
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Copyright
Dedication
About the Author
Contributors
Reviewers
Preface
Acknowledgments
Unit 1 Assessment of the Whole Person
Chapter 1 Evidence-Based Assessment
Culture and Genetics
References
Chapter 2 Cultural Assessment
Developmental Competence
3
kindle:embed:0006?mime=image/jpg
References
Chapter 3 The Interview
Developmental Competence
Culture and Genetics
References
Chapter 4 The Complete Health History
Culture and Genetics
Developmental Competence
References
Chapter 5 Mental Status Assessment
Structure and Function
Objective Data
Documentation And Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Mental Status Assessment
References
Chapter 6 Substance Use Assessment
Subjective Data
Objective Data
Abnormal Findings
Bibliography
Chapter 7 Domestic and Family Violence Assessment
Subjective Data
Objective Data
Abnormal Findings
References
Unit 2 Approach to the Clinical Setting
4
Chapter 8 Assessment Techniques and Safety in the Clinical Setting
Developmental Competence
References
Chapter 9 General Survey and Measurement
Objective Data
Documentation and Critical Thinking
Abnormal Findings
References
Chapter 10 Vital Signs
Objective Data
Documentation and Critical Thinking
Abnormal Findings
References
Chapter 11 Pain Assessment
Structure and Function
Subjective Data
Objective Data
Documentation and Critical Thinking
Abnormal Findings
References
Chapter 12 Nutrition Assessment
Structure and Function
Subjective Data
Objective Data
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Nutritional Assessment
References
5
Unit 3 Physical Examination
Chapter 13 Skin, Hair, and Nails
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Skin, Hair, and Nails Examination
References
Chapter 14 Head, Face, Neck, and Regional Lymphatics
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Summary Checklist: Head, Face, and Neck, Including Regional Lymphatics Examination
References
Chapter 15 Eyes
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Eye Examination
References
6
Chapter 16 Ears
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Ear Examination
References
Chapter 17 Nose, Mouth, and Throat
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
References
Chapter 18 Breasts, Axillae, and Regional Lymphatics
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Breasts and Regional Lymphatics Examination
References
Chapter 19 Thorax and Lungs
Structure and Function
Subjective Data
7
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Thorax and Lung Examination
References
Chapter 20 Heart and Neck Vessels
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Heart and Neck Vessels Examination
References
Chapter 21 Peripheral Vascular System and Lymphatic System
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Peripheral Vascular Examination
References
Chapter 22 Abdomen
Structure and Function
Subjective Data
Objective Data
8
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Abdomen Examination
References
Chapter 23 Musculoskeletal System
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings for Advanced Practice
Summary Checklist: Musculoskeletal Examination
References
Chapter 24 Neurologic System
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Neurologic Examination
References
Chapter 25 Male Genitourinary System
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
9
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Male Genitalia Examination
References
Chapter 26 Anus, Rectum, and Prostate
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings
Abnormal Findings for Advanced Practice
Summary Checklist: Anus, Rectum, and Prostate Examination
References
Chapter 27 Female Genitourinary System
Structure and Function
Subjective Data
Objective Data
Health Promotion and Patient Teaching
Documentation and Critical Thinking
Abnormal Findings for Advanced Practice
Summary Checklist: Female Genitalia Examination
References
Unit 4 Integration: Putting It All Together
Chapter 28 The Complete Health Assessment
Documentation and Critical Thinking
Chapter 29 The Complete Physical Assessment
Sequence/Selected Photos
10
Chapter 30 Bedside Assessment and Electronic Documentation
Sequence/Selected Photos
References
Chapter 31 The Pregnant Woman
Structure and Function
Subjective Data
Objective Data
Documentation and Critical Thinking
Abnormal Findings for Advanced Practice
Summary Checklist: The Pregnant Woman
References
Chapter 32 Functional Assessment of the Older Adult
References
Illustration Credits
Index
Assessment Terms: English and Spanish
Assessment Terms: English and Spanish
11
Chapter Organization
The following color bars are used consistently for each section within a chapter to help locate
specific information.
12
Structure and Function
Anatomy and physiology by body system
13
Subjective Data
Health history through questions (examiner asks) and explanation (rationale)
14
Objective Data
Core of the examination part of each body system chapter with skills, expected findings, and
common variations for healthy people, as well as selected abnormal findings
15
Health Promotion and Patient Teaching
Health promotion related to each body system.
16
Documentation and Critical Thinking
Clinical case studies with sample documentation for subjective, objective, and assessment data
17
Abnormal Findings
Tables of art and photographs of pathologic disorders and conditions; abnormal findings for clinical
practice and advanced practice where appropriate
18
Copyright
PHYSICAL EXAMINATION AND HEALTH ASSESSMENT, EIGHTH EDITION ISBN: 978-0-323-
51080-6
Copyright © 2020 by Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our arrangements
with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,
can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).
Notice
Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds or experiments described herein.
Because of rapid advances in the medical sciences, in particular, independent verification of
diagnoses and drug dosages should be made. To the fullest extent of the law, no responsibility is
assumed by Elsevier, authors, editors or contributors for any injury and/or damage to persons or
property as a matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.
Previous editions copyrighted 2016, 2012, 2008, 2004, 2000, 1996, 1993.
International Standard Book Number: 978-0-323-51080-6
Executive Content Strategist: Lee Henderson
Senior Content Development Specialist: Heather Bays
Publishing Services Manager: Julie Eddy
Senior Project Manager: Jodi M. Willard
Design Direction: Brian Salisbury
Printed in Canada
Last digit is the print number: 9 8 7 6 5 4 3 2 1
3251 Riverport Lane
St. Louis, Missouri 63043
19
http://www.elsevier.com/permissions
20
Dedication
To Paul, with love and thanks. You have read every word.
21
About the Author
Carolyn Jarvis received her PhD from the University of Illinois at Chicago, with a research
interest in the physiologic effect of alcohol on the cardiovascular system; her MSN from Loyola
University (Chicago); and her BSN cum laude from the University of Iowa. She is Professor, School
of Nursing at Illinois Wesleyan University, where she teaches Health Assessment, Pathophysiology,
and Pharmacology. Dr. Jarvis has taught physical assessment and critical care nursing at Rush
University (Chicago), the University of Missouri (Columbia), and the University of Illinois
(Urbana). Her current research interest concerns alcohol-interactive medications, and she includes
Honors students in this research.
In 2016, Illinois Wesleyan University honored Dr. Jarvis for her contributions to the ever-
changing field of nursing with the dedication of the Jarvis Center for Nursing Excellence. The Jarvis
Center for Nursing Excellence equips students with laboratory and simulation learning so that they
may pursue their nursing career with the same commitment as Dr. Jarvis.
Dr. Jarvis is the Student Senate Professor of the Year (2017) and was honored to give remarks at
commencement. She is a recipient of the University of Missouri’s Superior Teaching Award; has
taught physical assessment to thousands of baccalaureate students, graduate students, and nursing
professionals; has held 150 continuing education seminars; and is the author of numerous articles
and textbook contributions.
Dr. Jarvis has maintained a clinical practice in advanced practice roles—first as a cardiovascular
clinical specialist in various critical care settings and as a certified family nurse practitioner in
primary care. During the last 12 years, her enthusiasm has focused on Spanish language skills to
provide health care in rural Guatemala and at the Community Health Care Clinic in Bloomington.
Dr. Jarvis has been instrumental in developing a synchronous teaching program for Illinois
Wesleyan students both in Barcelona, Spain, and at the home campus.
22
23
Contributors
CHAPTER CONTRIBUTOR
Lydia Bertschi DNP, APRN, ACNP-BC
The co-contributor for Chapter 22 (Abdomen), Dr. Bertschi is an Assistant Professor at Illinois
Wesleyan University School of Nursing and a nurse practitioner in the intensive care unit at
UnityPoint Health—Methodist.
ASSESSMENT PHOTOGRAPHERS
Chandi Kessler BSN, RN
Chandi is a former Intensive Care Unit nurse and is an award-winning professional photographer.
Chandi specializes in newborn and family photography in and around Central Illinois.
Kevin Strandberg
Kevin is a Professor of Art Emeritus at Illinois Wesleyan University in Bloomington, Illinois. He has
contributed to all editions of Physical Examination & Health Assessment.
INSTRUCTOR AND STUDENT ANCILLARIES
Case Studies
Melissa M. Vander Stucken MSN, RN
Clinical Assistant Professor
School of Nursing
Sam Houston State University
Huntsville, Texas
Key Points
Joanna Cain BSN, BA, RN
Auctorial Pursuits, Inc.
President and Founder
Boulder, Colorado
PowerPoint Presentations
Daryle Wane PhD, ARNP, FNP-BC
BSN Program Director—Professor of Nursing
Department of Nursing and Health Programs
Pasco-Hernando State College
New Port Richey, Florida
Review Questions
Kelly K. Zinn PhD, RN
Associate Professor
School of Nursing
Sam Houston State University
Huntsville, Texas
TEACH for Nurses
Jennifer Duke
Freelancer
St. Louis, Missouri
Test Bank
24
Heidi Monroe MSN, RN-BC, CAPA
Assistant Professor of Nursing
NCLEX-RN Coordinator
Bellin College
Green Bay, Wisconsin
Test Bank Review
Kelly K. Zinn PhD, RN
Associate Professor
School of Nursing
Sam Houston State University
Huntsville, Texas
25
Reviewers
Valerie J. Fuller PhD, DNP, AGACNP-BC, FNP-BC, FAANP, FNAP
Assistant Professor
School of Nursing
University of Southern Maine
Portland, Maine
Peggy J. Jacobs DNP, RNC-OB, CNM, APRN
Instructional Support and Outcomes Coordinator
School of Nursing
Illinois Wesleyan University
Bloomington, Illinois
Marie Kelly Lindley PhD, RN
Clinical Assistant Professor
Louise Herrington School of Nursing
Baylor University
Dallas, Texas
Jeanne Wood Mann PhD, MSN, RN, CNE
Assistant Dean;
Associate Professor
School of Nursing
Baker University
Topeka, Kansas
Judy Nelson RN, MSN
Nurse Educator
Nursing
Fort Scott Community College
Fort Scott, Kansas
Cheryl A. Tucker DNP, RN, CNE
Clinical Associate Professor;
Undergraduate Level II BSN Coordinator
Louise Herrington School of Nursing
Baylor University
Dallas, Texas
Melissa M. Vander Stucken MSN, RN
Clinical Assistant Professor
School of Nursing
Sam Houston State University
Huntsville, Texas
Kelly K. Zinn PhD, RN
Associate Professor
School of Nursing
Sam Houston State University
Huntsville, Texas
26
27
Preface
This book is for those who still carefully examine their patients and for those of you who wish to
learn how to do so. You develop and practice, and then learn to trust, your health history and
physical examination skills. In this book, we give you the tools to do that. Learn to listen to the
patient—most often he or she will tell you what is wrong (and right) and what you can do to meet
his or her health care needs. Then learn to inspect, examine, and listen to the person’s body. The
data are all there and are accessible to you by using just a few extra tools. High-tech machinery is a
smart and sophisticated adjunct, but it cannot replace your own bedside assessment of your patient.
Whether you are a beginning examiner or an advanced-practice student, this book holds the content
you need to develop and refine your clinical skills.
This is a readable college text. All 8 editions have had these strengths: a clear, approachable
writing style; an attractive and user-friendly format; integrated developmental variations across the
life span with age-specific content on the infant, child, adolescent, pregnant woman, and older
adult; cultural competencies in both a separate chapter and throughout the book; hundreds of
meticulously prepared full-color illustrations; sample documentation of normal and abnormal
findings and 60 clinical case studies; integration of the complete health assessment in 2 photo essays
at the end of the book, where all key steps of a complete head-to-toe examination of the adult,
infant, and child are summarized; and a photo essay highlighting a condensed head-to-toe
assessment for each daily segment of patient care.
New to the Eighth Edition
The 8th edition has a new chapter section and several new content features. Cultural Assessment
in Chapter 2 is rewritten to increase emphasis on cultural assessment, self-assessment, and a new
section on spiritual assessment. The Interview in Chapter 3 has a new section on interprofessional
communication; Mental Status Assessment in Chapter 5 now includes the Montreal Cognitive
Assessment; Substance Use Assessment in Chapter 6 includes additional content on opioid/heroin
epidemic and alcohol-interactive medications; Domestic and Family Violence Assessment in
Chapter 7 includes all new photos, updates on the health effects of violence, added information on
the health effects of violence, and additional content on child abuse and elder abuse. The former
Vital Signs and Measurement chapter is now split into 2 chapters to increase readability; the Vital
Signs chapter (Chapter 10) stands alone with updated information on blood pressure guidelines.
The Physical Examination chapters all have a new feature—Health Promotion and Patient
Teaching—to give the reader current teaching guidelines. Many chapters have all new exam photos
for a fresh and accurate look. The focus throughout is evidence-based practice. Examination
techniques are explained and included (and in some cases, rejected) depending on current clinical
evidence.
Pat Thomas has designed 15 new art pieces in beautiful detail and 30 photo overlays. We have
worked together to design new chapter openers and anatomy; note Fig. 11.4 on opioid targets, Figs.
14.1 and 14.2 on complex anatomy of skull and facial muscles, Fig. 15.5 on complex eye anatomy;
Fig 23.8 on 3 images of complex shoulder anatomy showing muscle girdle, Fig. 27.2 on complex
female internal anatomy, and many others. We have worked with Chandi Kesler and Kevin
Strandberg in new photo shoots, replacing exam photos in Chapters 6 (Substance Use Assessment),
23 (Musculoskeletal System), 24 (Neurologic System), 28 (The Complete Health Assessment: Adult),
and many others.
All physical examination chapters are revised and updated, with evidence-based data in
anatomy and physiology, physical examination, and assessment tools. Developmental Competence
sections provide updated common illnesses, growth and development information, and the
Examination section of each body system chapter details exam techniques and clinical findings for
infants, children, adolescents, and older adults.
Culture and Genetics data have been revised and updated in each chapter. Common illnesses
28
affecting diverse groups are detailed. We know that some groups suffer an undue burden of some
diseases, not because of racial diversity per se, but because these groups are overrepresented in the
uninsured/poverty ranks and lack access to quality health care.
The Abnormal Findings tables located at the end of the chapters are revised and updated with
many new clinical photos. These are still divided into two sections. The Abnormal Findings tables
present frequently encountered conditions that every clinician should recognize, and the Abnormal
Findings for Advanced Practice tables isolate the detailed illustrated atlas of conditions encountered
in advanced practice roles.
Chapter references are up-to-date and are meant to be used. They include the best of clinical
practice readings as well as basic science research and nursing research, with an emphasis on
scholarship from the last 5 years.
Dual Focus as Text and Reference
Physical Examination & Health Assessment is a text for beginning students of physical examination as
well as a text and reference for advanced practitioners. The chapter progression and format permit
this scope without sacrificing one use for the other.
Chapters 1 through 7 focus on health assessment of the whole person, including health
promotion for all age-groups, cultural environment and assessment, interviewing and complete
health history gathering, the social environment of mental status, and the changes to the whole
person on the occasions of substance use or domestic violence.
Chapters 8 through 12 begin the approach to the clinical care setting, describing physical data-
gathering techniques, how to set up the examination site, body measurement and vital signs, pain
assessment, and nutritional assessment.
Chapters 13 through 27 focus on the physical examination and related health history in a body
systems approach. This is the most efficient method of performing the examination and is the most
logical method for student learning and retrieval of data. Both the novice and the advanced
practitioner can review anatomy and physiology; learn the skills, expected findings, and common
variations for generally healthy people; and study a comprehensive atlas of abnormal findings.
Chapters 28 through 32 integrate the complete health assessment. Chapters 28, 29 and 30
present the choreography of the head-to-toe exam for a complete screening examination in various
age-groups and for the focused exam in this unique chapter on a hospitalized adult. Chapters 31
and 32 present special populations—the assessment of the pregnant woman and the functional
assessment of the older adult, including assessment tools and caregiver and environmental
assessment.
This text is valuable to both advanced practice students and experienced clinicians because of its
comprehensive approach. Physical Examination & Health Assessment can help clinicians learn the
skills for advanced practice, refresh their memory, review a specific examination technique when
confronted with an unfamiliar clinical situation, compare and label a diagnostic finding, and study
the Abnormal Findings for Advanced Practice.
Continuing Features
1. Method of examination (Objective Data section) is clear, orderly, and easy to follow.
Hundreds of original examination illustrations are placed directly with the text to
demonstrate the physical examination in a step-by-step format.
2. Two-column format begins in the Subjective Data section, where the running column
highlights the rationales for asking history questions. In the Objective Data section, the
running column highlights selected abnormal findings to show a clear relationship between
normal and abnormal findings.
3. Abnormal Findings tables organize and expand on material in the examination section.
The atlas format of these extensive collections of pathology and original illustrations helps
students recognize, sort, and describe abnormal findings.
4. Genetics and cultural variations in disease incidence and response to treatment are cited
throughout using current evidence. The Jarvis text has the richest amount of cultural-
genetic content available in any assessment text.
5. Developmental approach in each chapter presents a prototype for the adult, then age-
29
specific content for the infant, child, adolescent, pregnant female, and older adult so
students can learn common variations for all age-groups.
6. Stunning full-color art shows detailed human anatomy, physiology, examination
techniques, and abnormal findings.
7. Health history (Subjective Data) appears in two places: (1) in Chapter 4, The Complete
Health History; and (2) in pertinent history questions that are repeated and expanded in
each regional examination chapter, including history questions that highlight health
promotion and self-care. This presentation helps students understand the relationship
between subjective and objective data. Considering the history and examination data
together, as you do in the clinical setting, means that each chapter can stand on its own if a
person has a specific problem related to that body system.
8. Chapter 3, The Interview, has the most complete discussion available on the process of
communication, interviewing skills, techniques and traps, and cultural considerations (for
example, how nonverbal behavior varies cross-culturally and the use of an interpreter).
9. Summary checklists at the end of each chapter provide a quick review of examination steps
to help develop a mental checklist.
10. Sample recordings of normal and abnormal findings show the written language you
should use so that documentation, whether written or electronic, is complete yet succinct.
11. 60 Clinical Case Studies of frequently encountered situations that show the application of
assessment techniques to patients of varying ages and clinical situations. These case
histories, in SOAP format ending in diagnosis, use the actual language of recording. We
encourage professors and students to use these as critical thinking exercises to discuss and
develop a Plan for each one.
11. User-friendly design makes the book easy to use. Frequent subheadings and instructional
headings assist in easy retrieval of material.
12. Spanish-language translations highlight important phrases for communication during the
physical examination and appear on the inside back cover.
Supplements
• The Pocket Companion for Physical Examination & Health
Assessment continues to be a handy and current clinical reference
that provides pertinent material in full color, with over 200
illustrations from the textbook.
• The Study Guide & Laboratory Manual with physical
examination forms is a full-color workbook that includes for each
chapter a student study guide, glossary of key terms, clinical
objectives, regional write-up forms, and review questions. The
pages are perforated so students can use the regional write-up
forms in the skills laboratory or in the clinical setting and turn
them in to the instructor.
• The revised Health Assessment Online is an innovative and
dynamic teaching and learning tool with more than 8000
electronic assets, including video clips, anatomic overlays,
animations, audio clips, interactive exercises, laboratory/diagnostic
tests, review questions, and electronic charting activities.
Comprehensive Self-Paced Learning Modules offer increased
flexibility to faculty who wish to provide students with tutorial
learning modules and in-depth capstone case studies for each
30
body system chapter in the text. The Capstone Case Studies
include Quality and Safety Challenge activities. Additional
Advance Practice Case Studies put the student in the exam room
and test history-taking and documentation skills. The
comprehensive video clip library shows exam procedures across
the life span, including clips on the pregnant woman. Animations,
sounds, images, interactive activities, and video clips are
embedded in the learning modules and cases to provide a
dynamic, multimodal learning environment for today’s learners.
• The companion EVOLVE Website
(http://evolve.elsevier.com/Jarvis/) for students and instructors
contains learning objectives, more than 300 multiple-choice and
alternate-format review questions, printable key points from the
chapter, and a comprehensive physical exam form for the adult.
Case studies—including a variety of developmental and cultural
variables—help students apply health assessment skills and
knowledge. These include 25 in-depth case studies with critical
thinking questions and answer guidelines. Also included is a
complete Head-to-Toe Video Examination of the Adult that can be
viewed in its entirety or by systems.
• Simulation Learning System. The new Simulation Learning
System (SLS) is an online toolkit that incorporates medium- to
high-fidelity simulation with scenarios that enhance the clinical
decision-making skills of students. The SLS offers a comprehensive
package of resources, including leveled patient scenarios, detailed
instructions for preparation and implementation of the simulation
experience, debriefing questions that encourage critical thinking,
and learning resources to reinforce student comprehension.
• For instructors, the Evolve website presents TEACH for Nursing,
PowerPoint slides, a comprehensive Image Collection, and a Test
Bank. TEACH for Nurses provides annotated learning objectives,
key terms, teaching strategies for the classroom in a revised section
with strategies for both clinical and simulation lab use and a focus
on QSEN competencies, critical thinking exercises, websites, and
performance checklists. The PowerPoint slides include 2000 slides
with integrated images and Audience Response Questions. A
separate 1200-illustration Image Collection is featured and,
finally, the ExamView Test Bank has over 1000 multiple-choice
and alternate-format questions with coded answers and rationales.
In Conclusion
31
http://evolve.elsevier.com/Jarvis/
Throughout all stages of manuscript preparation and production, we make every effort to develop a
book that is readable, informative, instructive, and vital. Thank you for your enthusiastic response
to the earlier editions of Physical Examination & Health Assessment. I am grateful for your
encouragement and for your suggestions, which are incorporated wherever possible. Your
comments and suggestions continue to be welcome for this edition.
Carolyn Jarvis c/o Education Content Elsevier 3251 Riverport Lane Maryland Heights, MO 63043
32
Acknowledgments
These 8 editions have been a labor of love and scholarship. During the 38 years of writing these
texts, I have been buoyed by the many talented and dedicated colleagues who helped make the
revisions possible.
Thank you to the bright, hardworking professional team at Elsevier. I am fortunate to have the
support of Lee Henderson, Executive Content Strategist. Lee coordinates communication with
Marketing and Sales and helps integrate user comments into the overall plan. I am grateful to work
daily with Heather Bays, Senior Content Development Specialist. Heather juggled all the deadlines,
readied all the manuscript for production, searched out endless photos for abnormal examination
findings, kept current with the permissions, and so many other daily details. Her work is pivotal to
our success. Heather, you rock.
I had a wonderful production team and I am most grateful to them. Julie Eddy, Publishing
Services Manager, supervised the schedule for book production. I am especially grateful to Jodi
Willard, Senior Project Manager, who has been in daily contact to keep the production organized
and moving. She works in so many extra ways to keep production on schedule. I am pleased with
the striking colors of the interior design of the 8th edition and the beautiful cover; both are the work
of Brian Salisbury, Book Designer. The individual page layout is the wonderful work of Leslie
Foster, Illustrator/Designer. Leslie hand-crafted every page, always planning how the page can be
made better. Because of her work, we added scores of new art and content, and we still came out
with comparable page length for the 8th edition.
I am so happy and excited to welcome Dr. Ann Eckhardt to this 8th edition. Ann has revised
numerous chapters in this edition and is gifted with new ideas. I hope her contributions continue
and grow. It has been wonderful to have a budding partner down the hall to bounce ideas and
share chapter ideas and photo shoots.
I have gifted artistic colleagues, who made this book such a vibrant teaching display. Pat Thomas,
Medical Illustrator, is so talented and contributes format ideas as well as brilliant drawings. Pat and
I have worked together from the inception of this text. While we cannot answer each other’s
sentences, we have every other quality of a superb professional partnership. Chandi Kesler and
Kevin Strandberg patiently set up equipment for all our photo shoots and then captured vivid,
lively exam photos of children and adults. Julia Jarvis and Sarah Jarvis also photographed our
infant photos with patience and clarity.
I am fortunate to have dedicated research assistants. Ani Almeroth searched and retrieved
countless articles and sources. She was always prompt and accurate and anticipated my every
request. Nicole Bukowski joined as a second research assistant and has been helpful in many ways.
I am most grateful to Paul Jarvis, who read and reread endless copies of galley and page proof,
finding any errors and making helpful suggestions.
Thank you to the faculty and students who took the time to write letters of suggestions and
encouragement—your comments are gratefully received and are very helpful. I am fortunate to
have the skilled reviewers who spend time reading the chapter manuscript and making valuable
suggestions.
Most important are the members of my wonderful family, growing in number and in support.
You all are creative and full of boundless energy. Your constant encouragement has kept me going
throughout this process.
Carolyn Jarvis PhD, APRN
33
34
U N I T 1
Assessment of the Whole Person
OUTLINE
Chapter 1 Evidence-Based Assessment
Chapter 2 Cultural Assessment
Chapter 3 The Interview
Chapter 4 The Complete Health History
Chapter 5 Mental Status Assessment
Chapter 6 Substance Use Assessment
Chapter 7 Domestic and Family Violence Assessment
35
C H A P T E R 1
36
Evidence-Based Assessment
C.D. is a 23-year-old Caucasian woman who works as a pediatric nurse at a children’s hospital. She
comes to clinic today for a scheduled physical examination to establish with a new primary care
provider (Fig. 1.1). On arrival the examiner collects a health history and performs a complete
physical examination. The preliminary list of significant findings looks like this:
1.1
• Recent graduate of a BSN program. Strong academic record
(A/B). Reports no difficulties in college.
Past medical history:
• Diagnosed with type 1 diabetes at age 12 years. Became
stuporous during a family vacation. Rushed home; admitted to
ICU with decreased level of consciousness (LOC) and heavy
labored breathing; blood sugar 1200 mg/dL. Coma × 3 days; ICU
stay for 5 days. Diabetic teaching during hospital stay; follow-up
with diabetic educator as needed.
• Now uses insulin pump. Reports HbA1c <7%.
• Finger fracture and ankle sprains during childhood (unable to
remember exact dates).
37
• Bronchitis “a lot” as a child.
• Tympanostomy tubes at age 5 due to frequent ear infections. No
issues in adulthood.
• Diabetic seizures at ages 16 and 18 caused by hypoglycemia.
Family gave glucagon injection. Did not go to emergency
department (ED).
• Denies tobacco use. Reports having 1 glass of red wine
approximately 5-6 days in the past month.
• Current medications: Insulin, simvastatin, birth control pills, fish
oil, multivitamin, melatonin (for sleep).
• Birth control since age 16 because of elevated blood sugar during
menstruation. Annual gynecologic examinations started at age 21
years. Last Pap test 6 months ago; told was “negative.”
• Family history: Mother and paternal grandfather with
hypertension; maternal grandfather transient ischemic attack, died
at age 80 from a myocardial infarction; maternal grandmother died
at age 49 of cervical and ovarian cancer; paternal grandmother
with arthritis in the hands and knees; paternal grandfather with
kidney disease at age 76; sister with migraine headaches.
• BP 108/72 mm Hg right arm, sitting. HR 76 beats/min, regular.
Resp 14/min unlabored.
• Weight 180 lbs. Height 5 ft 6 in. BMI 29 (overweight).
• Health promotion: Reports consistently wearing sunscreen when
outside and completing skin self-examination every few months.
Consistently monitors blood glucose. Walks 2 miles at least 3 days
per week and does strength training exercises 2 days per week. No
hypoglycemic episodes during exercise. Reports weekly pedicure
and foot check to monitor for skin breakdown. Biannual dental
visits. Performs breast self-examination monthly.
• Relationships: Close relationship with family (mother, father,
brother, and sister); no significant other. Feels safe in home
environment and reports having close female friends.
• Health perception: “Could probably lose some weight,” but
otherwise reports “good” health. Primarily concerned with blood
sugar, which becomes labile with life transitions.
• Expectations of provider: Establish an open and honest
relationship. Listen to her needs and facilitate her health goals.
Physical examination:
• Normocephalic. Face symmetric. Denies pain on sinus palpation.
• Vision tested annually. Has worn corrective lenses since 4th
38
grade. PERRLA.
• Scarring of bilateral tympanic membranes. Denies hearing
problems. Whispered words heard bilaterally.
• Gums pink; no apparent dental caries except for 3 noticeable
fillings. Reports no dental pain.
• Compound nevus on left inner elbow; patient reports no recent
changes in appearance. No other skin concerns.
• Breath sounds clear and equal bilaterally. Heart S1S2, neither
accentuated nor diminished. No murmur or extra heart sounds.
• Clinical breast exam done with annual gynecologic visit.
• Abdomen is rounded. Bowel sounds present. Reports BM daily.
• Extremities warm and = bilat. All pulses present, 2+ and = bilat.
No lymphadenopathy.
• Sensory modalities intact in legs and feet. No lesions.
The examiner analyzed and interpreted all the data; clustered the information, sorting out which
data to refer and which to treat; and identified the diagnoses. It is interesting to note how many
significant findings are derived from data the examiner collected. Not only physical data but also
cognitive, psychosocial, and behavioral data are significant for an analysis of C.D.'s health state. The
findings are interesting when considered from a life-cycle perspective; she is a young adult who
predictably is occupied with the developmental tasks of emancipation from parents, building an
independent lifestyle, establishing a vocation, making friends, forming an intimate bond with
another, and establishing a social group. C.D. appears to be meeting the appropriate developmental
tasks successfully.
A body of clinical evidence has validated the use of the particular assessment techniques in C.D.'s
case. For example, measuring the BP screens for hypertension, and early intervention decreases the
risk of heart attack and stroke. Monitoring blood sugar levels and HbA1c facilitates management of
her type 1 diabetes. Completing a skin assessment reveals a nevus on her elbow that needs to be
watched for any changes. Collecting health promotion data allows the examiner to personalize risk
reduction and health promotion information while reinforcing positive behaviors already in place.
The physical examination is not just a rote formality. Its parts are determined by the best clinical
evidence available and published in the professional literature.
Assessment—Point of Entry in an Ongoing Process
Assessment is the collection of data about the individual's health state. Throughout this text you
will be studying the techniques of collecting and analyzing subjective data (i.e., what the person
says about himself or herself during history taking) and objective data (i.e., what you as the health
professional observe by inspecting, percussing, palpating, and auscultating during the physical
examination). Together with the patient's record and laboratory studies, these elements form the
database.
From the database you make a clinical judgment or diagnosis about the individual's health state,
response to actual or potential health problems, and life processes. Thus the purpose of assessment
is to make a judgment or diagnosis.
An organized assessment is the starting point of diagnostic reasoning. Because all health care
diagnoses, decisions, and treatments are based on the data you gather during assessment, it is
paramount that your assessment be factual and complete.
Diagnostic Reasoning
The step from data collection to diagnosis can be a difficult one. Most novice examiners perform
well in gathering the data (given adequate practice) but then treat all the data as being equally
39
important. This leads to slow and labored decision making.
Diagnostic reasoning is the process of analyzing health data and drawing conclusions to identify
diagnoses. Novice examiners most often use a diagnostic process involving hypothesis forming and
deductive reasoning. This hypothetico-deductive process has four major components: (1) attending
to initially available cues; (2) formulating diagnostic hypotheses; (3) gathering data relative to the
tentative hypotheses; and (4) evaluating each hypothesis with the new data collected, thus arriving
at a final diagnosis. A cue is a piece of information, a sign or symptom, or a piece of laboratory or
imaging data. A hypothesis is a tentative explanation for a cue or a set of cues that can be used as a
basis for further investigation.
Once you complete data collection, develop a preliminary list of significant signs and symptoms
for all patient health needs. This is less formal in structure than your final list of diagnoses will be
and is in no particular order.
Cluster or group together the assessment data that appear to be causal or associated. For
example, with a person in acute pain, associated data are rapid heart rate, increased BP, and
anxiety. Organizing the data into meaningful clusters is slow at first; experienced examiners cluster
data more rapidly because they recall proven results of earlier patient situations and recognize the
same patterns in the new clinical situation.14 What is often referred to as nurses' intuition is likely
skilled pattern recognition by expert nurses.13
Validate the data you collect to make sure they are accurate. As you validate your information,
look for gaps in data collection. Be sure to find the missing pieces, because identifying missing
information is an essential critical-thinking skill. How you validate your data depends on
experience. If you are unsure of the BP, validate it by repeating it yourself, or ask another nurse to
validate the finding. Eliminate any extraneous variables that could influence BP results such as
recent activity or anxiety over admission. If you have less experience analyzing breath sounds or
heart murmurs, ask an expert to listen. Even with years of clinical experience, some signs always
require validation (e.g., a breast lump).
Critical Thinking and the Diagnostic Process
The standards of practice in nursing, traditionally termed the nursing process, include six phases:
assessment, diagnosis, outcome identification, planning, implementation, and evaluation.3 This is
an iterative process, allowing practitioners to move back and forth while caring for the needs of
complex patients (Fig. 1.2).
40
1.2 (Alfaro-LeFevre, 2009.)
Although the nursing process is a problem-solving approach, the way in which we apply the
process depends on our level and years of experience. The novice has no experience with a specified
patient population and uses rules to guide performance. It takes time, perhaps 2 to 3 years in
similar clinical situations, to achieve competency, in which you see actions in the context of patient
goals or plans of care. With more time and experience the proficient nurse understands a patient
situation as a whole rather than as a list of tasks. At this level you can see long-term goals for the
patient. You understand how today's interventions will help the patient in the future. Finally it
seems that expert nurses vault over the steps and arrive at a clinical judgment in one leap. The
expert has an intuitive grasp of a clinical situation and zeroes in on the accurate solution.5,6
Functioning at the level of expert in clinical judgment includes using intuition. Intuition is
characterized by immediate recognition of patterns; expert practitioners learn to attend to a pattern
of assessment data and act without consciously labeling it. Whereas the beginner operates from a
set of defined, structured rules, the expert practitioner uses intuitive links, has the ability to see
41
salient issues in a patient situation, and knows instant therapeutic responses.5,6 The expert has a
storehouse of experience concerning which interventions have been successful in the past.
For example, compare the actions of the nonexpert and the expert nurse in the following situation
of a young man with Pneumocystis jiroveci pneumonia:
He was banging the side rails, making sounds, and pointing to his endotracheal tube. He was
diaphoretic, gasping, and frantic. The nurse put her hand on his arm and tried to ascertain whether
he had a sore throat from the tube. While she was away from the bedside retrieving an analgesic,
the expert nurse strolled by, hesitated, listened, went to the man's bedside, reinflated the
endotracheal cuff, and accepted the patient's look of gratitude because he was able to breathe
again. The nonexpert nurse was distressed that she had misread the situation. The expert reviewed
the signs of a leaky cuff with the nonexpert and pointed out that banging the side rails and panic
help differentiate acute respiratory distress from pain.12
The method of moving from novice to becoming an expert practitioner is through the use of
critical thinking. We all start as novices, when we need the familiarity of clear-cut rules to guide
actions. Critical thinking is the means by which we learn to assess and modify, if indicated, before
acting. We may even be beginners more than once during our careers. As we transition to different
specialties, we must rebuild our database of experiences to become experts in new areas of
practice.1
Critical thinking is required for sound diagnostic reasoning and clinical judgment. During your
career you will need to sort through vast amounts of data to make sound judgments to manage
patient care. These data will be dynamic, unpredictable, and ever changing. There will not be any
one protocol you can memorize that will apply to every situation.
Critical thinking is recognized as an important component of nursing education at all levels.2,21
Case studies and simulations frequently are used to encourage critical thinking with students. As a
student, be prepared to think outside the box and think critically through patient-care situations.
Critical thinking goes beyond knowing the pathophysiology of a disease process and requires you
to put important assessment cues together to determine the most likely cause of a clinical problem
and develop a solution. Critical thinking is a multidimensional thinking process, not a linear
approach to problem solving.
Remember to approach problems in a nonjudgmental way and to avoid making assumptions.
Identify which information you are taking for granted or information you may overlook based on
natural assumptions. Rates of incorrect diagnoses are estimated to be as high as 10% to 15%, and
one of the primary causes of misdiagnosis is the clinician's bias.9 A 61-year-old man comes to your
clinic with complaints of shortness of breath. His history reveals a 5-pound weight gain this week
and a “fluttering in his chest.” During the physical assessment you find 2+ pitting edema in bilateral
lower extremities and an irregular apical pulse. Taken individually, ankle edema, weight gain,
shortness of breath, and palpitations may appear unrelated, but together they are signs of an
exacerbation of heart failure. Clustering of cues is extremely important in identifying a correct
diagnosis. Another patient, an overweight 20-year-old female, comes to your office for a scheduled
physical examination. Are you making assumptions about her lifestyle and eating habits? Make
sure that you double-check the accuracy of your data (subjective and objective) and avoid
assumptions that may bias your diagnosis.
Once you have clustered items that are related, you are ready to identify relevant information
and anything that does not fit. In the case of your heart failure patient, his complaints of a headache
may be viewed as unrelated to the primary diagnosis, whereas abdominal pain and difficulty
buttoning his pants are related (presence of ascites). As you gather clinical cues and complete an
assessment, also think about priority setting (Table 1.1).
TABLE 1.1
Identifying Immediate Priorities
Principles of Setting Priorities
1. Complete a health history, including allergies, medications, current medical problems, and reason for visit.
2. Determine whether any problems are related, and set priorities. Priority setting evolves over time with changes in priority depending on
the relationships between and severity of problems. For example, if the patient is having difficulty breathing because of acute rib pain,
42
managing the pain may be a higher priority than dealing with a rapid pulse.
Steps to Setting Priorities
1. Assign high priority to first-level priority problems such as airway, breathing, and circulation.
2. Next attend to second-level priority problems, which include mental status changes, acute pain, infection risk, abnormal laboratory
values, and elimination problems.
3. Address third-level priority problems such as lack of knowledge, mobility problems, and family coping.
Setting Priorities: Clinical Exemplar
You are working in the hospital and a patient is admitted to the emergency department with diabetic ketoacidosis as evidenced by a
blood glucose of >1100 mg/dL. The patient is lethargic and cannot provide a history. Based on family report, he is 12 years old and has
no significant medical, surgical, or medication history. Your first-level priorities include assuring a stable airway and adequate
breathing. Your second-level priorities include addressing mental status changes and abnormal laboratory values by intervening to
manage blood glucose levels. Once the patient has a stable blood sugar and is alert/oriented, you address third-level priorities, including
diabetic education, nutritionist consults, and referral to community support groups as appropriate.
• First-level priority problems are those that are emergent, life
threatening, and immediate, such as establishing an airway or
supporting breathing.
• Second-level priority problems are those that are next in
urgency—those requiring your prompt intervention to forestall
further deterioration (e.g., mental status change, acute pain, acute
urinary elimination problems, untreated medical problems,
abnormal laboratory values, risks of infection, or risk to safety or
security).
• Third-level priority problems are those that are important to the
patient’s health but can be attended to after more urgent health
problems are addressed. Interventions to treat these problems are
long term, and the response to treatment is expected to take more
time. These problems may require a collaborative effort between
the patient and health care professionals (Fig. 1.3).
1.3
Patients often require the assistance of an interdisciplinary team of practitioners to treat complex
43
medical problems. Throughout your career, look for opportunities to work in collaborative teams
and consult other practitioners as appropriate to care for your patients. Remember, health is
complex and requires input from a variety of specialties (e.g., physical therapy, speech therapy,
occupational therapy). Once you have determined problems, you must identify expected outcomes
and work with the patient to facilitate outcome achievement. Remember, your outcomes need to be
measurable. Set small goals that can be accomplished in a given time frame. For your heart failure
patient your goal may be to eliminate supplemental oxygen needs before discharge. Include your
patient and his or her input, as appropriate, in your outcome identification. Patients are more likely
to participate actively in care and follow through with recommendations if they are part of
developing the plan of care.
The final steps to the critical-thinking process include evaluation and planning. You must
continuously evaluate whether you are on the right track and correct any missteps or
misinterpretation of data. If you are not on the right path, reassess, reanalyze, and revise. The final
step is the development of a comprehensive plan that is kept up to date. Communicate the plan to
the multidisciplinary team. Be aware that this is a legal document and that accurate recording is
important for evaluation, insurance reimbursement, and research.
Evidence-Based Assessment
Does honey help burn wounds heal more quickly? Do mobile health technologies improve patient
compliance with medication administration? Does male circumcision reduce the risk of transmitting
human immunodeficiency virus (HIV) in heterosexual men? Can magnesium sulfate reduce
cerebral palsy risk in premature infants? Is aromatherapy an effective treatment for postoperative
nausea and vomiting?
Health care is a rapidly changing field. The amount of medical and nursing information available
has skyrocketed. Current efforts of cost containment result in a hospital population composed of
people who have a higher acuity but are discharged earlier than ever before. Clinical research
studies are continuously pushing health care forward. Keeping up with these advances and
translating them into practice are very challenging. Budget cuts, staff shortages, and increasing
patient acuity mean that the clinician has little time to grab a lunch break, let alone browse the most
recent journal articles for advances in a clinical specialty.
The conviction that all patients deserve to be treated with the most current and best-practice
techniques led to the development of evidence-based practice (EBP). As early as the 1850s Florence
Nightingale was using research evidence to improve patient outcomes during the Crimean War. It
was not until the 1970s, however, that the term evidence-based medicine was coined.16 In 1972 a
British epidemiologist and early proponent of EBP, Archie Cochrane, identified a pressing need for
systematic reviews of randomized clinical trials. In a landmark case, Dr. Cochrane noted multiple
clinical trials published between 1972 and 1981 showing that the use of corticosteroids to treat
women in premature labor reduced the incidence of infant mortality. A short course of
corticosteroid stimulates fetal lung development, thus preventing respiratory distress syndrome, a
serious and common complication of premature birth. Yet these findings had not been implemented
into daily practice, and thousands of low-birth-weight premature infants were dying needlessly.
Following a systematic review of the evidence in 1989, obstetricians finally accepted the use of
corticosteroid treatment as standard practice for women in preterm labor. Corticosteroid treatment
has since been shown to reduce the risk of infant mortality by 30% to 50%.7
EBP is more than the use of best-practice techniques to treat patients. The definition of EBP is
multifaceted and reflects holistic practice. Once thought to be primarily clinical, EBP now
encompasses the integration of research evidence, clinical expertise, clinical knowledge (physical
assessment), and patient values and preferences.16 Clinical decision making depends on all four
factors: the best evidence from a critical review of research literature; the patient’s own preferences;
the clinician’s own experience and expertise; and finally physical examination and assessment.
Assessment skills must be practiced with hands-on experience and refined to a high level.
Although assessment skills are foundational to EBP, it is important to question tradition when no
compelling research evidence exists to support it. Some time-honored assessment techniques have
been removed from the examination repertoire because clinical evidence indicates that these
techniques are not as accurate as once believed. For example, the traditional practice of auscultating
bowel sounds was found to be a poor indicator of returning GI motility in patients having
44
abdominal surgery.17,18 Following the steps to EBP, the research team asked an evidence-based
question (Fig. 1.4). Next, best research evidence was gathered through a literature search, which
suggested that early postoperative bowel sounds probably do not represent return of normal GI
motility. The evidence was appraised to identify whether a different treatment or assessment
approach was better. Research showed the primary markers for returning GI motility after
abdominal surgery to be the return of flatus and the first postoperative bowel movement. Based on
the literature, a new practice protocol was instituted, and patient outcomes were monitored.
Detrimental outcomes did not occur; the new practice guideline was shown to be safe for patients’
recovery and a better allocation of staff time. The research led to a change of clinical practice that
was safe, effective, and efficient.
1.4 (Eckhardt, 2018.)
Evidence shows that other assessment skills are effective for patient care. For example, clinicians
should measure the ankle brachial index (ABI), as described in Chapter 21 of this text. Evidence is
clear about the value of ABI as a screening measure for peripheral artery disease.
Despite the advantages to patients who receive care based on EBP, it often takes up to 17 years for
research findings to be implemented into practice.4 This troubling gap has led researchers to
examine closely the barriers to EBP, both as individual practitioners and as organizations. As
individuals, nurses lack research skills in evaluating quality of research studies, are isolated from
other colleagues knowledgeable in research, and lack confidence to implement change. Other
significant barriers are the organizational characteristics of health care settings. Nurses lack time to
go to the library to read research; health care institutions have inadequate library research holdings;
and organizational support for EBP is lacking when nurses wish to implement changes in patient
care.15
Fostering a culture of EBP at the undergraduate and graduate levels is one way in which health
care educators attempt to make evidence-based care the gold standard of practice. Students of
medicine and nursing are taught how to filter through the wealth of scientific data and critique the
findings. They are learning to discern which interventions would best serve their individual
patients. Facilitating support for EBP at the organizational level includes time to go to the library;
teaching staff to conduct electronic searches; journal club meetings; establishing nursing research
committees; linking staff with university researchers; and ensuring that adequate research journals
and preprocessed evidence resources are available in the library.15 “We have come to a time when the
credibility of the health professions will be judged by which of its practices are based on the best and latest
evidence from sound scientific studies in combination with clinical expertise, astute assessment, and respect
for patient values and preferences.”20
Collecting Four Types of Patient Data
Every examiner needs to establish four different types of databases, depending on the clinical
situation: complete, focused or problem-centered, follow-up, and emergency.
45
Complete (Total Health) Database
This includes a complete health history and a full physical examination. It describes the current and
past health state and forms a baseline against which all future changes can be measured. It yields
the first diagnoses.
The complete database often is collected in a primary care setting such as a pediatric or family
practice clinic, independent or group private practice, college health service, women’s health care
agency, visiting nurse agency, or community health agency. When you work in these settings, you
are the first health professional to see the patient and have primary responsibility for monitoring
the person’s health care. Collecting the complete database is an opportunity to build and strengthen
your relationship with the patient. For the well person this database must describe the person’s
health state; perception of health; strengths or assets such as health maintenance behaviors,
individual coping patterns, support systems, and current developmental tasks; and any risk factors
or lifestyle changes. For the ill person the database also includes a description of the person’s health
problems, perception of illness, and response to the problems.
For well and ill people, the complete database must screen for pathology and determine the ways
people respond to that pathology or to any health problem. You must screen for pathology because
you are the first, and often the only, health professional to see the patient. This screening is
important to refer the patient to another professional, help the patient make decisions, and perform
appropriate treatments. This database also notes the human responses to health problems. This
factor is important because it provides additional information about the person that leads to
nursing diagnoses.
In acute hospital care the complete database is gathered on admission to the hospital. In the
hospital, data related specifically to pathology may be collected by the admitting physician. You
collect additional information on the patient’s perception of illness, functional ability or patterns of
living, activities of daily living, health maintenance behaviors, response to health problems, coping
patterns, interaction patterns, spiritual needs, and health goals.
Focused or Problem-Centered Database
This is for a limited or short-term problem. Here you collect a “mini” database, smaller in scope and
more targeted than the complete database. It concerns mainly one problem, one cue complex, or one
body system. It is used in all settings—hospital, primary care, or long-term care. For example, 2
days after surgery a hospitalized person suddenly has a congested cough, shortness of breath, and
fatigue. The history and examination focus primarily on the respiratory and cardiovascular systems.
Or in an outpatient clinic a person presents with a rash. The history follows the direction of this
presenting concern such as whether the rash had an acute or chronic onset; was associated with a
fever, new food, pet, or medicine; and was localized or generalized. Physical examination must
include a clear description of the rash.
Follow-Up Database
The status of any identified problems should be evaluated at regular and appropriate intervals.
What change has occurred? Is the problem getting better or worse? Which coping strategies are
used? This type of database is used in all settings to follow up both short-term and chronic health
problems. For example, a patient with heart failure may follow up with his or her primary care
practitioner at regular intervals to reevaluate medications, identify changes in symptoms, and
discuss coping strategies.
Emergency Database
This is an urgent, rapid collection of crucial information and often is compiled concurrently with
lifesaving measures. Diagnosis must be swift and sure. For example, a person is brought into an ED
with suspected substance overdose. The first history questions are “What did you take?” “How
much did you take?” and “When?” The person is questioned simultaneously while his or her
airway, breathing, circulation, level of consciousness, and disability are being assessed. Clearly the
emergency database requires more rapid collection of data than the episodic database. Once the
person has been stabilized, a complete database can be compiled. An emergency database may be
compiled by questioning the patient, or if the patient is unresponsive, health care providers may
need to rely on family and friends.
46
Expanding the Concept of Health
Assessment is the collection of data about a person’s health state. A clear definition of health is
important because this determines which assessment data should be collected. In general the list of
data that must be collected has lengthened as our concept of health has broadened.
Consideration of the whole person is the essence of holistic health. Holistic health views the
mind, body, and spirit as interdependent and functioning as a whole within the environment.
Health depends on all these factors working together. The basis of disease is multifaceted,
originating from both within the person and from the external environment. Thus the treatment of
disease requires the services of numerous providers. Nursing includes many aspects of the holistic
model (i.e., the interaction of the mind and body, the oneness and unity of the individual). Both the
individual human and the external environment are open systems, dynamic and continually
changing and adapting to one another. Each person is responsible for his or her own personal
health state and is an active participant in health care. Health promotion and disease prevention
form the core of nursing practice.
In a holistic model, assessment factors are expanded to include such things as lifestyle behaviors,
culture and values, family and social roles, self-care behaviors, job-related stress, developmental
tasks, and failures and frustrations of life. All are significant to health.
Health promotion and disease prevention now round out our concept of health. Guidelines to
prevention emphasize the link between health and personal behavior. The report of the U.S.
Preventive Services Task Force23 asserts that the great majority of deaths among Americans
younger than 65 years are preventable. Prevention can be achieved through counseling from
primary care providers designed to change people’s unhealthy behaviors related to smoking,
alcohol and other drug use, lack of exercise, poor nutrition, injuries, and sexually transmitted
infections.10 Health promotion is a set of positive acts that we can take. In this model the focus of
the health professional is on teaching and helping the consumer choose a healthier lifestyle.
The frequency interval of assessment varies with the person’s illness and wellness needs. Most ill
people seek care because of pain or some abnormal signs and symptoms they have noticed, which
prompts an assessment (i.e., gathering a complete, a focused, or an emergency database). In
addition, risk assessment and preventive services can be delivered once the presenting concerns are
addressed. Interdisciplinary collaboration is an integral part of patient care (Fig. 1.5). Providers,
nurses, dietitians, therapists and other health professionals must work together to care for
increasingly complex patients.
1.5 (Yoder-Wise, 2015.)
For the well person opinions are inconsistent about assessment intervals. The term annual checkup
is vague. What does it constitute? Is it necessary or cost-effective? How can primary-care clinicians
deliver services to people with no signs and symptoms of illness? Periodic health checkups are an
excellent opportunity to deliver preventive services and update the complete database. Although
47
periodic health checkups could induce unnecessary costs and promote services that are not
recommended, advocates justify well-person visits because of delivery of some recommended
preventive services and reduction of patient worry.11,19
The Guide to Clinical Preventive Services is a positive approach to health assessment and risk
reduction.23 The Guide is updated annually and is accessible online or in print. It presents evidence-
based recommendations on screening, counseling, and preventive topics and includes clinical
considerations for each topic. These services include screening factors to gather during the history,
age-specific items for physical examination and laboratory procedures, counseling topics, and
immunizations. This approach moves away from an annual physical ritual and toward varying
periodicity based on factors specific to the patient. Health education and counseling are highlighted
as the means to deliver health promotion and disease prevention.
For example, the guide to examination for C.D. (23-year-old female, nonpregnant, not sexually
active) would recommend the following services for preventive health care:
1. Screening history for dietary intake, physical activity, tobacco/alcohol/drug use, and sexual
practices
2. Physical examination for height and weight, BP, and screening for cervical cancer and HIV
3. Counseling for physical activity and risk prevention (e.g., secondhand smoke, seatbelt use)
4. Depression screening
5. Healthy diet counseling, including lipid disorder screening and obesity screening
6. Chemoprophylaxis to include multivitamin with folic acid (females capable of or planning
pregnancy)
C.D. is living successfully with a serious chronic condition. Because she has diabetes, including
periodic checks of hemoglobin A1c and a fasting glucose level are important. In addition, you
should ask how her pump is functioning and whether she is having any difficulties with blood
sugar control.
48
Culture and Genetics
In a holistic model of health care, assessment factors must include culture. An introduction to cross-
cultural concepts follows in Chapter 2. These concepts are developed throughout the text as they
relate to specific chapters.
Metaphors such as melting pot, mosaic, and salad bowl have been used to describe the cultural
diversity that characterizes the United States. The United States is becoming a majority-minority
nation. Although non-Hispanic whites will remain the largest single group, they will no longer
constitute a numeric majority. Emerging minority is a term that has been used to classify the
populations, including African Americans, Latinos, and Asian Americans, that are rapidly
becoming a combined numeric majority.22 By 2060 the U.S. Census Bureau projects that minorities
will constitute 56% of the population. The Latino and Asian populations are projected to nearly
double by 2060, and all other racial groups are expected to increase as well. By 2060 nearly 29% of
the population will be Latino, 14% African American, 9% Asian, and just over 1% American Indians
or Alaska Natives. In 2040 the U.S. Census Bureau anticipates that there will be more people over
the age of 65 years than under the age of 18 years for the first time in history.8
The United States is becoming increasingly diverse, making cultural competence more important
and more challenging for health care providers. U.S. health care providers also travel abroad to
work in a variety of health care settings in the international community. Medical and nursing teams
volunteer to provide free medical and surgical care in developing countries (Fig. 1.6). International
interchanges are increasing among health care providers, making attention to the cultural aspects of
health and illness an even greater priority.
1.6
During your professional career you may be expected to assess short-term foreign visitors who
travel for treatments, international university faculty, students from abroad studying in U.S. high
schools and universities, family members of foreign diplomats, immigrants, refugees, members of
more than 106 different ethnic groups, and American Indians from 510 federally recognized tribes.
A serious conceptual problem exists in that nurses and physicians are expected to know,
understand, and meet the health needs of people from culturally diverse backgrounds with
minimal preparation in cultural competence.
Culture has been included in each chapter of this book. Understanding the basics of a variety of
cultures is important in health assessment. People from varying cultures may interpret symptoms
differently; therefore, asking the right questions is imperative for you to gather data that are
accurate and meaningful. It is important to provide culturally relevant health care that incorporates
cultural beliefs and practices. An increasing expectation exists among members of certain cultural
groups that health care providers will respect their “cultural health rights,” an expectation that may
conflict with the unicultural Western biomedical worldview taught in U.S. educational programs
that prepare nurses, doctors, and other health care providers.
Given the multicultural composition of the United States and the projected increase in the
49
number of individuals from diverse cultural backgrounds anticipated in the future, a concern for
the cultural beliefs and practices of people is increasingly important.
50
References
1. Alfaro-LeFevre R. Critical thinking, clinical reasoning and clinical judgment. 6th ed.
Elsevier: Philadelphia; 2017.
2. American Association of Colleges of Nursing. Essentials of baccalaureate education
for professional nursing practice. [Available at] https://www.aacnnursing.org; 2008.
3. American Nurses Association. Nursing: Scope and standards of practice. 3rd ed.
American Nurses Publishing: Washington, DC; 2015.
4. Balas EA, Boren SA. Managing clinical knowledge for health care improvements.
Bemmel J, McCray AT. Yearbook of medical informatics 2000. Schattauer: Stuttgart,
Germany; 2000.
5. Benner P, Tanner CA, Chesla CA. Expertise in nursing practice. Springer: New
York; 1996.
6. Benner P, Tanner CA, Chesla CA. Becoming an expert nurse. Am J Nurs.
1997;97(6) [16BBB–16DDD].
7. Cochrane Collaboration. [Available at] www.cochrane.org; 2018.
8. Colby SL, Ortman JM. Projections of the size and composition of the US
population: 2014 to 2060. Population Estimates and projections. [US Census Bureau]
2015.
9. Croskerry P. From mindless to mindful practice—cognitive bias and clinical
decision making. N Engl J Med. 2013;368:2445–2450.
10. Ezzati M, Riboli E. Behavioral and dietary risk factors for noncommunicable
diseases. N Engl J Med. 2013;369(10):954–964.
11. Goroll AH. Toward trusting therapeutic relationships—in favor of the annual
physical. N Engl J Med. 2015;373:1487–1489.
12. Hanneman SK. Advancing nursing practice with a unit-based clinical expert.
Image (IN). 1996;28(4):331–337.
13. Harjai PK, Tiwari R. Model of critical diagnostic reasoning: Achieving expert
clinician performance. Nurs Educ Perspect. 2009;30(5):305–311.
14. Koharchik L, Caputi L, Robb M, et al. Fostering clinical reasoning in nursing
students. Am J Nurs. 2015;115(1):58–61.
15. Lipscomb M. Exploring evidence-based practice: Debates and challenges in nursing.
Routledge: New York; 2016.
16. Mackey A, Bassendowski S. The history of evidence-based practice in nursing
education and practice. J Prof Nurs. 2017;33(1):51–55.
17. Madsen D, Sebolt T, Cullen L, et al. Listening to bowel sounds: An evidence-
based practice project. Am J Nurs. 2005;105(12):40–50.
18. Massey RL. Return of bowel sounds indicating an end of postoperative ileus: Is it
time to cease this long-standing nursing tradition? Medsurg Nurs. 2012;21(3):146–
150.
19. Mehrotra A, Prochazka A. Improving value in health care—against the annual
physical. N Engl J Med. 2015;373:1485–1487.
20. Melnyk BM, Fineout-Overholt E. Evidence-based practice in nursing & healthcare.
2nd ed. Lippincott Williams & Wilkins: Philadelphia; 2011.
21. National League for Nursing Accrediting Commission. Accreditation manual and
interpretive guidelines by program type for postsecondary and higher degree programs in
nursing. Author: New York; 2006.
22. Spector RE. Cultural diversity in health and illness. 9th ed. Pearson: Indianapolis, IN;
2016.
23. U.S. Preventive Services Task Force (USPSTF). Published recommendations.
[Available at] https://uspreventiveservicestaskforce.org; 2017.
51
https://www.aacnnursing.org
http://www.cochrane.org
https://uspreventiveservicestaskforce.org
52
C H A P T E R 2
53
Cultural Assessment
As a health professional, it is imperative that you learn to build trusting relationships with patients.
Part of forming trust is listening to each patient’s individual needs and establishing an awareness of
his or her culture. You must be open to people who are different from you, have a curiosity about
people, and work to become culturally competent (Fig. 2.1). A cultural assessment is an integral
part of forming a full database of information about each patient. Serious errors can occur due to
lack of cultural competence. If you fail to ask about traditional, herbal, or folk remedies, you may
unknowingly give or prescribe a medication that has a significant interaction. For example, ginseng
raises the serum digoxin level and can lead to adverse, even fatal, consequences.18
2.1
A key to understanding cultural diversity is self-awareness and knowledge of one’s own culture.
Your cultural identification might include the subculture of nursing or health care professionals.
You might identify yourself as a Midwesterner, a college student, an athlete, a member of the Polish
community, or a Buddhist. These multiple and often changing cultural and subcultural
identifications help define you and influence your beliefs about health and illness, coping
mechanisms, and wellness behaviors. Developing self-awareness will make you a better health care
provider and ensure that you are prepared to care for diverse clients. Recognizing your own
culture, values, and beliefs is an interactive and ongoing process of self-discovery.18 A cultural
assessment of each patient is important, but a cultural self-assessment is also an integral component
of becoming culturally competent. To understand another person’s culture, you must first
understand your own culture.
Over the course of your professional education, you will study physical examination and health
promotion across the life span and learn to conduct numerous assessments such as a health history,
a physical examination, a mental health assessment, a domestic violence assessment, a nutritional
assessment, and a pain assessment. However, depending on the cultural and racial background of
the person, the data you gather in the assessments may vary. Therefore a cultural assessment must
be an integral component of a complete physical and health assessment.
Demographic Profile of the United States
The estimates of the U.S. population illustrate the increasing diversity in the population and
54
highlight the importance of cultural competence in health care.40 The population of the United
States exceeded 321 million people in 2015 with only 61.6% of the population identifying as white,
non-Hispanic.38 Over 13% of the U.S. population were born elsewhere, and over 21% of the U.S.
population report speaking a language other than English in the home.3,37 The national minority,
actually emerging majority, population makes up 38% of the total. Among this emerging majority,
the largest ethnic group is Hispanic, who make up 17.6% of the population and are the fastest-
growing minority group. The largest racial minority group is African American or black (13.3%),
followed by Asians (5.6%), two or more races (2.6%), American Indians and Alaska natives (1.2%),
and native Hawaiians and other Pacific Islanders (0.2%).38
There are demographic differences between the emerging majority groups when compared with
non-Hispanic whites. These demographic differences include age, poverty level, and household
composition. The number of relatives living in the household is higher for all racial and ethnic
minorities compared to non-Hispanic whites, as is the number of multigenerational families (Fig.
2.2). African Americans, American Indians, and Alaska natives are more likely to have
grandparents who are responsible for the care of grandchildren compared with other groups.37
2.2 (Courtesy Holly Birch Photography.)
Asians and non-Hispanic whites have the highest median income, whereas African Americans
have the lowest household income followed by Hispanics. All ethnic and racial minority groups
have poverty rates exceeding the national average of 14.8%. Non-Hispanic whites have the lowest
reported poverty at 10%, whereas 25.2% of African Americans and 24.7% of Hispanics live at or
below the poverty line.11 Contributing to the high rates of poverty is low educational attainment.
Approximately 33% of Hispanics and 13% of African Americans have less than a high school
education compared with 6.7% of non-Hispanic whites.33 Lower educational levels and lower
income levels are also correlated with likelihood of disability. Approximately 20% of adults report
having a disability. African Americans were the most likely to report a disability (29%), followed by
Hispanics (25.9%).6
Immigration
Immigrants are people who are not U.S. citizens at birth. Some new immigrants have minimal
understanding of health care resources and how to navigate the health care system. They may not
speak or understand English, and they may not be literate in the language of their country of origin.
Therefore it is imperative that health care providers address the needs of this growing population.
In 2014 the population of the United States included over 42.2 million foreign-born individuals,
which accounted for 13.2% of the population. The number of foreign-born individuals residing in
the United States has quadrupled since the 1960s and is expected to almost double by 2065.3 During
your career, you will care for foreign-born individuals who have unique health care needs. The
United States health care system is complex and difficult to navigate for anyone. Keep in mind, the
health care system may be even more difficult for foreign-born individuals with limited English
proficiency. Make sure that you identify interpreter needs early and ask the appropriate cultural
55
assessment questions when caring for each patient.
Determinants of Health and Health Disparities
An individual’s health status is influenced by a constellation of factors known as social
determinants of health (SDOH).15 The social determinants of health include economic stability,
education, social and community context, neighborhood and built environment, and health and
health care (Fig. 2.3). The five social determinants of health are interconnected and affect a person’s
health from preconception to death. However, evidenced-based research has consistently shown
that poverty has the greatest influence on health status.
2.3 (USSDHS, 2018.)
For the past two decades the goals of Healthy People have been to eliminate health disparities. A
health disparity is “a particular type of health difference that is closely linked with social, economic,
and/or environmental disadvantage. Health disparities adversely affect groups of people who have
systematically experienced greater obstacles to health based on their racial or ethnic group; religion;
socioeconomic status; gender; age; mental health; cognitive, sensory, or physical disability; sexual
orientation or gender identity; geographic location; or other characteristics historically linked to
discrimination or exclusion.”12
New health care delivery frameworks must strive for social and physical environments that
promote quality of life free from preventable illness, disability, and premature death. Public health
sectors must be encouraged to address the needs for safe and affordable housing; reliable
transportation; nutritious food that is accessible to everyone; safe, well-integrated neighborhoods
and schools; health care providers that are culturally and linguistically competent; and clean water
and air.
Health Care Disparities Among Vulnerable Populations
Health disparities affect people who experience social, economic, and/or environmental
disadvantage. These people are vulnerable populations and include ethnic and racial minorities,
people with disabilities, and the LGBT community. Health care disparities are measured by
comparing the percent of difference from one group to the best group rate for a disease. One study
found a 33-year age difference between the longest- and shortest-living groups in the United
States.13 In another example, African American children are twice as likely to be hospitalized and
four times as likely to die from asthma as non-Hispanic whites.13 Overall infant mortality in the
United States is 5.90 per 1,000 live births, but the mortality rate for African American infants is 10.93
56
per 1,000 live births.27 Lack of health insurance may contribute to health disparities. An estimated
10.6% of non-Hispanic whites do not have health insurance, whereas more than 30% of Hispanics,
nearly 19% of non-Hispanic blacks, and almost 14% of Asians lack basic insurance coverage.7
Few of the differences in health between ethnic and racial groups have a biologic basis but rather
pertain to the social determinants of health. Disparities in exposure to environmental contaminants,
violence, and substance abuse among some racial and ethnic minorities suggest the need for a major
transformation of the neighborhoods and social contexts of people’s lives. Although overall quality
of health care is improving in the United States, access to care and health disparities are not
showing any improvement.14
National Cultural and Linguistic Standards
Many forms of discrimination based on race or national origin limit the opportunities for people to
gain equal access to health care services. Many health and social service programs provide
information about their services in English only. Language barriers have a negative impact on the
quality of care provided, and those patients with language barriers also have increased risk of
noncompliance to treatment regimens.
Because immigration occurs at high levels and immigrants with limited English proficiency (LEP)
have particular needs, the Office of Minority Health published the National Standards for Culturally
and Linguistically Appropriate Services in Health Care. This set of 15 standards provides a blueprint to
improve quality of care and eliminate health disparities for culturally diverse populations. Health
disparities affect the health of individuals and communities, making this a major public health
concern in the United States.39
Linguistic Competence
Under the provisions of Title VI of the Civil Rights Act of 1964, when people with LEP seek health
care in settings such as hospitals, nursing homes, clinics, daycare centers, and mental health centers,
services cannot be denied to them. English is the predominant language of the United States.
However, among people at least 5 years old living in the United States, 21% spoke a language other
than English at home.38 Of those, 62% spoke Spanish, 18% reported speaking an Indo-European
language, 16% spoke an Asian language, and 4% spoke a different language. Of people who spoke a
language other than English at home, nearly 42% reported that they did not speak English “very
well.”38
When people with LEP seek health care, they are frequently faced with receptionists, nurses, and
physicians who speak English only. Additional time and resources are necessary to adequately care
for patients with LEP. The language barrier may lead to a decreased quality of care due to limited
understanding of patient needs. To prevent serious adverse health outcomes for LEP persons, it is
imperative that health care professionals communicate effectively and utilize resources such as
interpreter services.
Chapter 3 describes in more detail how to communicate with people who do not understand
English, how to interact with interpreters, and which services are available when no interpreter is
available. It is vital that interpreters be present who not only serve to verbally translate the
conversation but who can also describe to you the cultural aspects and meanings of the person’s
situation.
Culture-Related Concepts
Culture is a complex phenomenon that includes attitudes, beliefs, self-definitions, norms, roles, and
values. It is also a web of communication, and much of culture is transmitted nonverbally through
socialization or enculturation (Fig. 2.4).35 Socialization or enculturation is the process of being raised
within a culture and acquiring the norms, values, and behaviors of that group. According to the
Department of Health and Human Services Office of Minority Health, a person’s culture defines
health and illness, identifies when treatment is needed and which treatments are acceptable, and
informs a person of how symptoms are expressed and which symptoms are important.39
57
2.4
Culture has four basic characteristics: (1) learned from birth through the processes of language
acquisition and socialization; (2) shared by all members of the same cultural group; (3) adapted to
specific conditions related to environmental and technical factors and to the availability of natural
resources; and (4) dynamic and ever changing.
Culture is a universal phenomenon, yet the culture that develops in any given society is unique,
encompassing all the knowledge, beliefs, customs, and skills acquired by members of that society.
However, within cultures some groups of people share different beliefs, values, and attitudes.
Differences occur because of ethnicity, religion, education, occupation, age, and gender. When such
groups function within a large culture, they are referred to as subcultural groups.
Many people think about race and ethnicity as a part of the concept of culture. Race reflects self-
identification and is typically a social construct referring to a group of people who share similar
physical characteristics. The U.S. Census Bureau lists 15 racial categories for respondents to choose
from: white, black (African American), American Indian or Alaskan native, Asian Indian, Chinese,
Filipino, Japanese, Korean, Vietnamese, native Hawaiian, Guamanian or Chamorro, Samoan, other
Pacific Islander, some other race, or more than one race. A growing number of respondents are
identifying as more than one race, especially those in younger generations. An additional question
asks respondents to identify whether they are of Hispanic origin. Hispanic origin includes the
categories of Mexican, Puerto Rican, Cuban, and another Hispanic, Latino, or Spanish origin. People
who self-identify as Hispanic can be of any racial category. For example, Dominicans typically
identify as black Hispanics, whereas people from Argentina identify as white Hispanics. Because
the terms race and origin cause confusion, the U.S. Census Bureau is considering changing the race
and origin questions so that people can select all that apply, with racial categories and Hispanic
origin combined in the same question.8
Race may be useful when determining disease prevalence, but does not typically refer to specific
genetic or biologic characteristics that distinguish one group of people from another. Throughout
the text, information on disease prevalence related to race is presented in the culture and genetics
section of each chapter. As we learn more about the human genome, we may find that genetic
variations become more important than overarching racial classifications.
Ethnicity refers to a social group that may possess shared traits, such as a common geographic
origin, migratory status, religion, language, values, traditions or symbols, and food preferences. The
ethnic group may have a loose group identity with few or no cultural traditions in common or a
coherent subculture with a shared language and body of tradition. Similarly ethnic identity is one’s
self-identification with a particular ethnic group. This identity may be strongly adherent to one’s
country of origin or background or weakly identified.
Acculturation is the process of adopting the culture and behavior of the majority culture. During
the late 1800s and early part of the 1900s when the United States experienced its greatest period of
immigration, the expectation was that immigrants would take on the characteristics of the dominant
culture, known as assimilation. Immigrants were discouraged from having a unique ethnic identity
in favor of the nationalist identity.
The recent wave of immigrants in the latter part of the 20th century has developed different
strategies of acculturation. Rather than solely relying on assimilation, new immigrants developed
new means of forging identities between the countries of origin and their host country, such as
58
“biculturalism” and “integration.”34 Assimilation is unidirectional, proceeding in a linear fashion
from unacculturated to acculturated. However, biculturalism and integration are bidirectional and
bidimensional, inducing reciprocal changes in both cultures and maintaining aspects of the original
culture in one’s ethnic identity (Fig. 2.5).
2.5
Those who emigrate to the United States from non-Western countries may find the process of
acculturation, whether in schools or society, to be an extremely difficult and painful process. The
losses and changes that occur when adjusting to or integrating a new system of beliefs, routines,
and social roles are known as acculturative stress, which has important implications for health and
illness.9,10,36 When caring for patients, please be aware of the factors that contribute to acculturative
stress, as defined in Table 2.1.5
TABLE 2.1
Dimensions of Acculturative Stress
INSTRUMENTAL/ENVIRONMENTAL SOCIAL/INTERPERSONAL SOCIETAL
Financial
Language barriers
Lack of access to health care
Unemployment
Lack of education
Loss of social networks
Loss of social status
Family conflict
Family separation
Intergenerational conflict
Changing gender roles
Discrimination/stigma
Level of acculturation
Political/historical forces
Legal status
Modified from Caplan, S. (2007). Latinos, acculturation, and acculturative stress: a dimensional concept analysis. Policy Politics
Nurs Pract, 8(2), 93-106.
Religion and Spirituality
Other major aspects of culture are religion and spirituality. Spirituality is a broader term focused
on a connection to something larger than oneself and a belief in transcendence. On the other hand,
religion refers to an organized system of beliefs concerning the cause, nature, and purpose of the
universe, as well as the attendance of regular services.19 Religion is a shared experience of
spirituality or the values, beliefs, and practices into which people either are born or that they may
adopt to meet their personal spiritual needs through communal actions, such as religious affiliation;
attendance and participation in a religious institution, prayer, or meditation; and religious practices
(Fig. 2.6). Some people define their spirituality in terms of religion, whereas others identify
spirituality outside a formal religion.2
59
2.6 A, Mosque in Abu Dabai. B, Saint Basil’s Cathedral. C, Thai spirit house. D, Buddhist shrine. (C and
D, Spector, 2009.)
The Landscape Survey detailed statistics on religion in America.29 The study found that religious
affiliation in the United States is both diverse and extremely fluid. The number of people who say
they are not affiliated with any particular faith increased from 16.1% in 2007 to 22.8% in 2015. The
number of people affiliated with Christian denominations fell from 78.4% to 70.6%, whereas those
who belong to non-Christian faiths increased from 4.7% to 5.9%. The percentage of people who
affiliate with a Christian faith has dropped, but American Christians are becoming increasingly
diverse.29 Although fewer individuals identify with a specific religion, spirituality assessment is
important for all patients regardless of religious affiliation or nonaffiliation.
In times of crisis such as serious illness and impending death, spirituality may be a source of
consolation for the person and his or her family. Religious dogma and spiritual leaders may exert
considerable influence on the person’s decision making concerning acceptable medical and surgical
treatment such as vaccinations, choice of healer(s), and other aspects of the illness. Completion of a
spiritual assessment is one component of a holistic patient assessment. Understanding a patient’s
spirituality can improve understanding of coping mechanisms, identify referral needs such as visits
by a chaplain, identify social support after discharge, and open discussions about medical care (e.g.,
acceptance of certain treatments such as blood transfusion). Failure to assess spiritual needs has
60
been shown to increase health care costs, especially at end of life, and unmet spiritual needs can
lead to poor outcomes.21 Religion and spirituality are associated with improved physical health,
and attending to the religious and spiritual needs of patients is an important part of holistic patient
care.19
Health-Related Beliefs and Practices
Healing and Culture
HEALTH is defined as the balance of the person, both within one’s being (physical, mental, or
spiritual) and in the outside world (natural, communal, or metaphysical). It is a complex,
interrelated phenomenon. Before determining whether cultural practices are helpful, harmful, or
neutral, you must first understand the logic of the traditional belief systems coming from a person’s
culture and then grasp the nature and meaning of the health practice from the person’s cultural
perspective. Wide cultural variation exists in the manner in which certain symptoms and disease
conditions are perceived, diagnosed, labeled, and treated.
Beliefs About Causes of Illness
Throughout history people have tried to understand the cause of illness and disease. Theories of
causation have been formulated on the basis of ethnic identity, religious beliefs, social class,
philosophic perspectives, and level of knowledge.23 Many people who maintain traditional beliefs
would define HEALTH in terms of balance and a loss of this balance. This understanding includes
the balance of mind, body, and spirit in the overall definitions of HEALTH and ILLNESS.
Disease causation may be viewed in three major ways: from a biomedical or scientific
perspective, a naturalistic or holistic perspective, or a magicoreligious perspective.22
Biomedical
The biomedical or scientific theory of illness causation assumes that all events in life have a cause
and effect. Among the biomedical explanations for disease is the germ theory, which holds that
microorganisms such as bacteria and viruses cause specific disease conditions. Most educational
programs for physicians, nurses, and other health care providers embrace the biomedical or
scientific theories that explain the causes of both physical and psychological illnesses.20
Naturalistic
The second way in which people explain the cause of illness is from the naturalistic or holistic
perspective, found most frequently among American Indians, Asians, and others who believe that
human life is only one aspect of nature and a part of the general order of the cosmos. These people
believe that the forces of nature must be kept in natural balance or harmony.
Some Asians believe in the yin/yang theory, in which health exists when all aspects of the person
are in perfect balance.25 Rooted in the ancient Chinese philosophy of Tao, the yin/yang theory states
that all organisms and objects in the universe consist of yin and yang energy forces. The seat of the
energy forces is within the autonomic nervous system, where balance between the opposing forces
is maintained during health. Yin energy represents the female and negative forces such as
emptiness, darkness, and cold, whereas yang forces are male and positive, emitting warmth and
fullness. Foods are classified as hot and cold in this theory and are transformed into yin and yang
energy when metabolized by the body. Yin foods are cold, and yang foods are hot. Cold foods are
eaten with a hot illness, and hot foods are eaten with a cold illness. The yin/yang theory is the basis
for Eastern or Chinese medicine.
Many Hispanic, Arab, and Asian groups embrace the hot/cold theory of health and illness, an
explanatory model with origins in the ancient Greek humoral theory. The four humors of the body
—blood, phlegm, black bile, and yellow bile—regulate basic bodily functions and are described in
terms of temperature, dryness, and moisture. The treatment of disease consists of adding or
subtracting cold, heat, dryness, or wetness to restore the balance of the humors. Beverages, foods,
herbs, medicines, and diseases are classified as hot or cold according to their perceived effects on
the body, not on their physical characteristics.
According to the hot/cold theory, the person is whole, not just a particular ailment. Those who
embrace the hot/cold theory maintain that health consists of a positive state of total well-being,
61
including physical, psychological, spiritual, and social aspects of the person.
Clinical case study: Y.L. is a 30-year-old female who delivered her first child via uncomplicated
vaginal delivery yesterday. You notice that she has not been drinking, refused her shower, and that
her family has been providing much of the baby’s care. In an effort to promote healing, you
encourage her to go for a walk, provide fresh ice water, and talk to her about the importance of
bonding. Y.L. continues to rest, drinks only warm beverages, and allows her family to provide care.
You are concerned for Y.L.’s well-being and decide to speak with a colleague.
You: I’m worried about Y.L. She isn’t caring for her baby or herself, won’t drink her water, and barely
gets out of bed.
Colleague: Where is she from?
You: I’m not sure, but I think her family may have emigrated from China.
Colleague: It’s common for the Chinese to believe in the hot/cold theory, wherein postpartum
women need to avoid things that are cold and anything that might disrupt their yin. Have you asked
her about her beliefs?
You: No. I didn’t even think about it.
Colleague: We have pretty rigid standards of treatment in Western medicine, but we need to respect
the beliefs of our patients. You should talk to her about her beliefs and any postpartum rituals we
can support.
Magicoreligious
The third major way in which people explain the causation of ILLNESS is from a magicoreligious
perspective. The basic premise is that the world is an arena in which supernatural forces
dominate.16 The fate of the world and those in it depends on the action of supernatural forces for
good or evil. Examples of magical causes of illness include beliefs in voodoo or witchcraft, whereas
faith healing is based on religious beliefs.
Traditional Treatments and Folk Healers
All cultures have their own preferred lay or popular healers, recognized symptoms of ill health,
acceptable sick role behavior, and treatments. In addition to seeking help from you as a
biomedical/scientific health care provider, patients may also seek help from folk or religious healers
(Fig. 2.7). Each culture has its own healers, most of whom speak the person’s native tongue, make
house calls, understand the person’s cultural health beliefs, and cost significantly less than
practitioners in the biomedical/scientific health care system. In some religions, spiritual healers may
be found among the ranks of the ordained and official religious hierarchy. Spirituality is included in
the perceptions of health and illness.
62
2.7 Aztec healer. (US DoD, 2015.)
Hispanics may rely on curandero(ra), espiritualista (spiritualist), yerbo(ba) (herbalist), or partera (lay
midwife). Blacks may mention having received assistance from a houngan (a voodoo priest or
priestess), spiritualist, or “old lady” (an older woman who has successfully raised a family and who
specializes in child care and folk remedies). American Indians may seek assistance from a shaman or
a medicine man or woman. Asians may mention that they have visited herbalists, acupuncturists, or
bonesetters. Among the Amish the term braucher refers to folk healers who use herbs and tonics in
the home or community context. Brauche, a folk healing art, refers to sympathy curing, which is
sometimes called powwowing in English.
Many cultures believe that the cure is incomplete unless healing of body, mind, and spirit is
carried out. The division of the person into parts is itself a Western concept. If your patient refers to
a lay healer that you are unfamiliar with or a practice you do not understand, ask for clarification.
Be careful not to ask in a judgmental way that makes the person feel attacked for seeking help
outside the medical community (e.g., “Why did you see a shaman instead of coming to the
hospital?”). Instead ask in a way that communicates acceptance of their beliefs and allows for open
communication (e.g., “Can you tell me more about your visit to the shaman? What did he/she
recommend?”).
The variety of healing beliefs and practices used by the many ethnocultural populations found in
the United States far exceeds the limitations of this chapter. Fig. 2.8 presents samples of traditional
amulets that may be seen in practice. In addition to folk practices, many other complementary
healing practices exist. In the United States an estimated 38% of adults use some form of
complementary therapy to treat an illness, including acupuncture, Ayurveda, biofeedback,
chiropractic or osteopathic manipulation, deep-breathing exercises and guided imagery, diet-based
therapies, homeopathy, hypnosis, meditation, tai chi, yoga, and traditional folk healers.26
Furthermore, U.S. adults spend $30.2 billion out-of-pocket on visits to complementary and
alternative medicine practitioners, to traditional healers, and for the purchase of related products
each year.26
63
2.8 Amulets. A, The glass blue eye from Turkey seen here is an example of an amulet that may be hung
in the home. B, A seed with a red string may be placed on the crib of a baby of Mexican heritage. C,
These bangles may be worn for protection by a person of Caribbean heritage. D, This small packet is
placed on a crib or in the room of a baby of Japanese heritage.35
The availability of over-the-counter medications, the relatively high literacy level of Americans,
the growing availability of herbal remedies, and the influence of the Internet and mass media in
communicating health-related information to the general population have contributed to the high
percentage of cases of self-treatment. Home treatments are attractive for their accessibility,
64
especially compared with the inconvenience associated with traveling to a physician, nurse
practitioner, or pharmacist, particularly for people from rural or sparsely populated areas.
Furthermore, home treatment may mobilize the person’s social support network and provide the
sick person with a caring environment in which to convalesce.
A wide variety of alternative, complementary, or traditional interventions are gaining the
recognition of health care professionals in the biomedical/scientific health care system.
Acupuncture, acupressure, therapeutic touch, massage, therapeutic use of music, biofeedback,
relaxation techniques, meditation, hypnosis, distraction, imagery, iridology, reflexology, and herbal
remedies are examples of interventions that people may use either alone or in combination with
other treatments. Many pharmacies and grocery stores routinely carry herbal treatments for a wide
variety of common illnesses. The effectiveness of complementary and alternative interventions for
specific health problems has been studied (see National Center for Complementary and Integrative
Health at www.nccih.nih.gov).
65
http://www.nccih.nih.gov
Developmental Competence
Illness during childhood may pose a difficult clinical situation. Children and adults have spiritual
needs that vary according to the child’s developmental level and the religious climate that exists in
the family. Parental perceptions about the illness of the child may be partially influenced by
religious beliefs. For example, some parents may believe that a transgression against a religious law
is responsible for a congenital anomaly in their offspring. Other parents may delay seeking medical
care because they believe that prayer should be tried first. Certain types of treatment (e.g.,
administration of blood; medications containing caffeine, pork, or other prohibited substances) and
selected procedures may be perceived as cultural taboos (i.e., practices to be avoided by both
children and adults).
Values held by the dominant U.S. culture such as emphasis on independence, self-reliance, and
productivity influence the aging members of society. North Americans define people as old at the
chronologic age of 65 years and then limit their work, in contrast to other cultures in which people
are first recognized as being unable to work and then identified as being “old.”
Older adults may develop their own means of coping with illness through self-care, assistance
from family members, and support from social groups. Some cultures have attitudes and specific
behaviors for older adults that include humanistic care and identification of family members as care
providers.
Older immigrants who have made major lifestyle adjustments in their move from their
homelands to the United States or from a rural to an urban area (or vice versa) may not be aware of
health care alternatives, preventive programs, health care benefits, and screening programs for
which they are eligible. These people also may be in various stages of culture shock (i.e., the state of
disorientation or inability to respond to the behavior of a different cultural group because of its
sudden strangeness, unfamiliarity, and incompatibility with the newcomer’s perceptions and
expectations).
Transcultural Expression of Pain
To illustrate how symptom expression may reflect the person’s cultural background, let us use an
extensively studied symptom—pain. Pain is a universally recognized phenomenon, and it is an
important aspect of assessment. It is a private, subjective experience that is greatly influenced by
cultural heritage. Expectations, manifestations, and management of pain are all embedded in a
cultural context. The definition of pain, like that of health or illness, is culturally determined. The
meaning of painful stimuli, the way people define their situations, and the impact of personal
experience all help determine the experience of pain.
In addition to expecting variations in pain perception and tolerance, you also should expect
variations in the expression of pain. While some patients will readily complain of pain, others will
remain stoic and attempt to hide pain as much as possible. It is well known that people turn to their
social environment for validation and comparison. A first important comparison group is the
family, which transmits cultural norms to its children.
Becoming a Culturally Competent Practitioner
Cultural competency includes the attitudes, knowledge, and skills necessary for providing quality
care to diverse populations.4 The integration of cultural knowledge into day-to-day practice takes
time because many practitioners in the health care system hesitate to adopt new ideas. Cultural
competency does not come after reading a chapter or several books on this highly specialized area.
It is complex and multifaceted, and many facets change over time. The areas of knowledge include
sociology, psychology, theology, cultural anthropology, demography, folklore, and immigration
history and policies. One must also have an understanding of poverty and environmental health.
Cultural competency involves understanding your own culture and health. What cultural health
practices do you use on a daily basis? What complementary or alternative therapies do you use?
One response to governmental mandates for cultural competency is the development of cultural
care that describes professional health care as culturally sensitive, appropriate, and competent.
There is a discrete body of knowledge, and much of the content is introduced in this chapter.
66
• Culturally sensitive implies that caregivers possess some basic
knowledge of and constructive attitudes toward the diverse
cultural populations found in the setting in which they are
practicing.
• Culturally appropriate implies that the caregivers apply the
underlying background knowledge that must be possessed to
provide a given person with the best possible health care.
• Culturally competent implies that the caregivers understand and
attend to the total context of the individual’s situation, including
awareness of immigration status, stress factors, other social factors,
and cultural similarities and differences.34
Cultural care is the provision of health care across cultural boundaries; it considers the context
both in which the patient lives and the situations in which the patient’s health problems arise.35
Each chapter in this text includes information necessary for the delivery of culturally appropriate
care.
Completing a Cultural Assessment
Lack of cultural knowledge has long been identified as a challenge to providing high-quality health
care. Providing culturally congruent care is an integral part of providing holistic patient care. Many
theories, frameworks, and models have been developed to facilitate understanding of culturally
competent care. Instead of narrowly defining what to expect from a certain race or ethnic group,
health care providers should complete a cultural assessment.
Categorical cultural knowledge related to language, food preferences, religion, and health care
beliefs is limiting. Although health care providers have used this type of categorical information for
years to inform practice, major limitations exist. The use of categorical knowledge can limit your
perspective, putting you at risk for stereotyping.15 As the United States continues to become
increasingly diverse, health care providers are challenged to ignore previous assumptions and
stereotypes in favor of asking the questions and completing a cultural assessment.
Cultural Self-Assessment
Although specific cultural self-assessment tools exist, a simple format is to think about and consider
your culture: What influenced your life? Where is your family from? Do you or your family have
cultural traditions? What led you to a career in health care? List your personal values, attitudes, and
beliefs. Finally, answer the FICA questions presented in the upcoming section titled Spiritual
Assessment. All too often, people state that they don’t have a culture. Everyone has a culture, but
individuals often don’t think about the components of their culture in daily life. By purposefully
exploring the areas of culture and understanding your personal history, you will develop cultural
sensibility. Cultural sensibility is the “deliberate proactive behavior by health care providers who
examine cultural situations through thoughtful reasoning, responsiveness, and discreet
interactions.”15, p. 3
Cultural Assessment
No one cultural assessment tool is identified as the gold standard of care. In addition to cultural
assessment tools, there are a variety of theories, frameworks, and models of cultural competence.
Each model identifies slightly different domains and perspectives on cultural competence, but all
explicate the importance of completing a cultural assessment on every patient.
You should never assume an understanding of a person’s culture; instead ask about cultural
beliefs that may impact the care provided. Based on recommended domains from cultural
experts,17,24,32 the following is a list of domains you may consider assessing when caring for a
patient. Please keep in mind that all domains may not be appropriate given your setting; however,
67
each of the domains is an important component of understanding culture.
• Heritage. Country of ancestry; years in the United States, etc.
• Health practices. Use of a traditional healer;
complementary/alternative therapies; preventative medicine; any
practices that are unacceptable (e.g., blood transfusion)
• Communication. Primary language; preferred name and method
of communication; use of touch as a communication strategy
• Family roles and social orientation. Who makes health care
decisions within the family; family priorities; role of extended
family; relationship status
• Nutrition. Any forbidden foods; fasting rituals; foods avoided or
consumed during illness and in the peripartum period
• Pregnancy, birth, child-rearing. Number of children in the
family; beliefs surrounding pregnancy; beliefs surrounding
childbirth and child-rearing; special rituals after delivery
• Spirituality/religion. Religious affiliation; religious beliefs;
holidays; spirituality assessment
• Death. Rituals in preparation for death; meaning of death;
grieving
• Health providers. What is the role of the nurse or doctor;
preference for same sex provider; any healers besides physicians
and nurses
Although all areas may not be appropriate in all settings, consider the aforementioned main areas
as you complete a cultural assessment on each patient. Asking each patient about cultural beliefs
will increase your cultural competence while decreasing the potential for stereotyping based on
previous experiences with a client from a similar background.
Spiritual Assessment
All too often a singular question—“Do you have any religious or spiritual preferences that we can
support?”—is the extent of the spiritual assessment. This one question can be answered with a
dichotomous yes/no, does not allow for open discussion, and sometimes leads to confusion. Instead
of a singular question, health care professionals can use a brief spiritual assessment tool. A number
of tools exist that allow health care providers to open a discussion of spiritual care, and no one tool
is recommended above others.
One easy-to-use spiritual assessment tool is the FICA Spiritual History Tool, which serves as a
guide for conversations. Health care professionals are encouraged to use FICA as a guide for
fostering open dialogue and not as a checklist of questions to ask a patient. Recommended
questions for each area are provided, but should be adapted to the situation. Speaking with a
person who is at the end of life requires very different questions than does speaking with a healthy
person during a wellness visit. FICA stands for faith, importance/influence, community, and
address/action.
F- “Do you consider yourself spiritual or religious? Do you have spiritual beliefs, values, or
practices that help you cope with stress?”
I- “What importance does your faith or belief have in your life? Have your beliefs influenced
you in how you handle stress? Do you have specific beliefs that influence your health care
68
decisions? If so, are you willing to share those with your health care team?”
C- “Are you part of a spiritual or religious community?” If so, how does this group support
you? “Is there a group of people you really love or who are important to you?”
A- “How should I address these issues in your health care?”31
In health care settings you frequently encounter people who are searching for a spiritual meaning
to help explain their illnesses or disabilities. Some health care providers find spiritual assessment
difficult because of the abstract and personal nature of the topic. The omission of questions about
spiritual and religious practices can raise barriers to holistic care.
In addition to spiritual assessment tools, several well-validated questionnaires assess how a
person is coping with loss, such as a serious illness. Perhaps the most well-known and widely used
tool is the Brief RCOPE, a short 14-item assessment for use in clinical practice (Table 2.2).28 The Brief
RCOPE helps practitioners understand the patient’s religious coping to enable them to integrate
spirituality in treatment.28 It examines whether a patient is using positive or negative religious
coping. Positive religious coping mechanisms indicate that the person is strongly connected to a
divine presence, is spiritually connected with others, and has a benevolent outlook on life, whereas
negative religious coping methods reflect a spiritual struggle with one’s self or with God. Illness
may be attributed to God’s punishment, to an act of the Devil, or totally within the hands of God.
Just as positive religious coping has been linked to positive health, negative religious coping is
associated with poor health outcomes.28
TABLE 2.2
Spirituality Assessment: The Brief RCOPEa
The following items deal with how you coped with a significant trauma or negative event in your life. There are many ways to try to
deal with problems. These items ask which part religion played in what you did to cope with this negative event. Obviously, different
people deal with things in different ways, but we are interested in how you tried to deal with it. Each item says something about a
particular way of coping. We want to know to what extent you did what the item says: how much or how frequently. Don’t answer on the
basis of what worked or not—just whether or not you did it. Use these response choices.
Try to rate each item separately in your mind. Make your answers as true for you as you can.
1 = Not at all
2 = Somewhat
3 = Quite a bit
4 = A great deal
1. Looked for a stronger connection with God. _____
2. Sought God’s love and care. _____
3. Sought help from God in letting go of my anger. _____
4. Tried to put my plans into action together with God. _____
5. Tried to see how God might be trying to strengthen me in this situation. _____
6. Asked forgiveness for my sins. _____
7. Focused on religion to stop worrying about my problems. _____
8. Wondered whether God had abandoned me. _____
9. Felt punished by God for my lack of devotion. _____
10. Wondered what I did for God to punish me. _____
11. Questioned God’s love for me. _____
12. Wondered whether my church had abandoned me. _____
13. Decided the devil made this happen. _____
14. Questioned the power of God. _____
aThe reproduction of any copyrighted material is prohibited without the express permission of the copyright holder.
From Pargament, K., Feuille, M., & Burdzy, D. (2011). The Brief RCOPE: current psychometric status of a short measure of
religious coping. Religions 2, 51-76.
We need to understand a patient’s cultural and religious beliefs because countless health-related
behaviors are promoted by nearly all cultures and religions. Meditating, exercising and maintaining
physical fitness, getting enough sleep, being willing to have the body examined, telling the truth
about how one feels, maintaining family viability, hoping for recovery, coping with stress, being
able to live with a disability, and caring for children are all related to one’s core values and beliefs.
69
References
1. Reference deleted in proofs.
2. Anandarajah G, Hight E. Spirituality and medical practice: Using the HOPE
questions as a practical tool for spiritual assessment. Am Fam Physician.
2001;63:81–89.
3. Brown A, Stepler R. Statistical portrait of the foreign-born population in the United
States, 2014. http://www.pewhispanic.org/2016/04/19/statistical-portrait-of-the-
foreign-born-population-in-the-united-states-2014-key-charts/#2013-foreign-born-
SP-int; 2016.
4. Campinha-Bacote J. The process of cultural competence in the delivery of healthcare
services. 4th ed. Transcultural C.A.R.E. Associates: Cincinnati; 2003.
5. Caplan S. Latinos, acculturation, and acculturative stress: A dimensional concept
analysis. Policy Polit Nurs Pract. 2007;8(2):93–106.
6. CDC. 53 million adults in the US live with a disability.
https://www.cdc.gov/media/releases/2015/p0730-us-disability.html; 2015.
7. CDC. [National Health Interview Survey]
https://www.cdc.gov/nchs/nhis/index.htm.
8. Cohn D. Census considers new approach to asking about race – by not using the term at
all. http://www.pewresearch.org/fact-tank/2015/06/18/census-considers-new-
approach-to-asking-about-race-by-not-using-the-term-at-all/; 2015.
9. Cuellar I, Bastida E, Braccio SM. Residency in the United States, subjective well-
being, and depression in an older Mexican-origin sample. J Aging Health.
2004;16(4):447–466.
10. Dalla RI, Christensen A. Latino immigrants describe residence in rural
Midwestern meatpacking communities. Hispanic J Behav Sci. 2005;27(1):23–41.
11. DeNavas-Walt C, Proctor BD. U.S. Census Bureau, Current Population Reports,
Income and poverty in the United States: 2014. U.S. Government Printing Office:
Washington, DC; 2015.
12. U.S. Department of Health and Human Services. [n.d.]
https://www.healthypeople.gov/2020/topics-objectives/topic/social-
determinants-of-health.
13. U.S. Department of Health and Human Services. DHHS plan to reduce health
disparities. [n.d.]
http://www.minorityhealth.hhs.gov/npa/files/Plans/HHS/HHS_Plan_complete
14. Disparities in healthcare quality among racial and ethnic minority groups.
http://archive.ahrq.gov/research/findings/nhqrdr/nhqrdr10/minority.html; 2010.
15. Ellis Fletcher SN. Cultural sensibility in healthcare: A personal and professional
guidebook. Sigma Theta Tau International Honor Society for Nursing:
Indianapolis, IN; 2015.
16. Fadiman A. The spirit catches you and you fall down: A Hmong child, her American
doctors, and the collision of two cultures. Farrar, Straus and Giroux: New York; 1997.
17. Giger JN, Davidhizar R. The Giger and Davidhizar Transcultural Assessment
Model. J Transcult Nurs. 2002;13(3):185–188.
18. Jeffreys MR. Teaching cultural competence in nursing and health care. Springer
Publishing Company: New York, NY; 2010.
19. Jim SL, Pustejovsky JE, Park CL, et al. Religion, spirituality, and physical health in
cancer patients: A meta-analysis. Cancer. 2015;121:3760–3768.
20. Kleinman A. Concepts and a model for the comparison of medical systems as
cultural systems. Social Sci Med. 1978;12(2–B):85–95.
21. Koenig HG. Religion, spirituality, and health: The research and clinical
70
http://www.pewhispanic.org/2016/04/19/statistical-portrait-of-the-foreign-born-population-in-the-united-states-2014-key-charts/#2013-foreign-born-SP-int
https://www.cdc.gov/media/releases/2015/p0730-us-disability.html
https://www.cdc.gov/nchs/nhis/index.htm
http://www.pewresearch.org/fact-tank/2015/06/18/census-considers-new-approach-to-asking-about-race-by-not-using-the-term-at-all/
https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-health
http://www.minorityhealth.hhs.gov/npa/files/Plans/HHS/HHS_Plan_complete
http://archive.ahrq.gov/research/findings/nhqrdr/nhqrdr10/minority.html
implications. ISRN Psychiatry. 2012.
22. Kottak CP. Cultural anthropology. 12th ed. McGraw Hill: Boston; 2008.
23. Landrine H, Klonoff EA. Cultural diversity in causal attributions for illness: The
role of the supernatural. J Behav Med. 1994;17:181–193.
24. Leininger MM, McFarland MR. Culture care diversity and universality: A worldwide
nursing theory. 2nd ed. Jones and Bartlett Publishers: Boston, MA; 2006.
25. Men J, Guo L. A general introduction to traditional Chinese medicine. CRC Press: Boca
Raton, FL; 2010.
26. Nahin RL, Barnes PM, Stussman BJ. Expenditures on complementary health
approaches: United States, 2012. National Center for Health Statistics:
Hyattsville, MD; 2016. National Health Statistics Reports. .
27. National Center for Health Statistics. Health, United States: 2016. [Hyattsville, MD]
2017.
28. Pargament K, Feuille M, Burdzy D. The Brief RCOPE. [Religions 2] 2011:51–76.
29. Pew Forum on Religion and Public Life. America’s changing religious landscape.
http://www.pewforum.org/2015/05/12/americas-changing-religious-landscape/;
2015.
30. Reference deleted in proofs.
31. Puchalski CM. The FICA spiritual history tool #274. J Palliat Med. 2014;17(1):105–
106.
32. Purnell LD. Transcultural health care: A culturally competent approach. 4th ed. FA
Davis Company: Philadelphia, PA; 2013.
33. Ryan CL, Bauman K. U.S. Census Bureau, Current Population Reports, Educational
attainment in the United States: 2015. U.S. Government Printing Office:
Washington, DC; 2016.
34. Sam DL, Berry JW. The Cambridge handbook of acculturation psychology. 2nd ed.
Cambridge University Press: Cambridge, UK; 2016.
35. Spector RE. Cultural diversity in health and illness. 8th ed. NJ: Pearson: Upper
Saddle River; 2013.
36. Torres L, Driscoll MW, Voell M. Discrimination, acculturation, acculturative stress
and Latino psychological distress: A moderated mediational model. Cultur Divers
Ethnic Minor Psychol. 2012;18(1):17–25.
37. U.S. Census Bureau. American FactFinder. [n.d.] factfinder.census.gov.
38. U.S. Census Bureau. QuickFacts: United States. [n.d.] www.census.gov/quickfacts.
39. US Department of Health and Human Services Office of Minority Health. Think
Cultural Health. https://www.thinkculturalhealth.hhs.gov/Content/clas.asp.
40. Vespa J, Lewis JM, Kreider RM. America’s families and living arrangements: 2012:
population characteristics P20-570. [Source: U.S. Census Bureau, American Community
Survey, 2011] http://www.census.gov/prod/2013pubs/p20-570 ; 2013.
71
http://www.pewforum.org/2015/05/12/americas-changing-religious-landscape/
http://factfinder.census.gov
http://www.census.gov/quickfacts
https://www.thinkculturalhealth.hhs.gov/Content/clas.asp
http://www.census.gov/prod/2013pubs/p20-570
C H A P T E R 3
72
The Interview
The interview is the first point of contact with a clienta and the most important part of data
collection. During the interview you collect subjective data (i.e., what the person says about himself
or herself) (Fig. 3.1). Although the purpose of the interview isn’t to collect objective data (i.e., what
you obtain through physical examination), you will collect some objective data as you note the
person’s posture, physical appearance, ability to carry on a conversation, and overall demeanor. The
interview is the best chance for a person to tell you what he or she perceives the health state to be.
Once people enter the health care system, they relinquish some control, but during the interview
the client remains in charge. The individual knows everything about his or her own health state,
and you know nothing. Skilled interviewers are able to glean all necessary information while
establishing a rapport with the client. Successful interviews allow you to:
3.1
1. Gather complete and accurate data about the person’s health state, including the description
and chronology of any symptoms.
2. Establish trust so that the person feels accepted and thus free to share all relevant data.
3. Teach the person about his or her health state.
4. Build rapport for a continuing therapeutic relationship.
5. Discuss health promotion and disease prevention.
Consider the interview a contract between you and your client. The contract concerns what the
client needs and expects from health care and what you as a clinician have to offer. Your mutual
goal is optimal health for the client. The terms of the contract include:
• Time and place of the interview and succeeding physical
examination.
• Introduction of yourself and a brief explanation of your role.
• The purpose of the interview.
• How long it will take.
• Expectation of participation for each person.
• Presence of any other people (e.g., family, other health
professionals, students).
73
• Confidentiality and to what extent it may be limited.
• Any costs to the client.
Although the person already may know some of this information through telephone contact with
receptionists or the admitting office, the remaining points need to be stated clearly at the outset.
Any confusion or unclear expectations can cause mistrust and resentment rather than the openness
and trust required to facilitate the interview.
The Process of Communication
The vehicle that carries you and your client through the interview is communication.
Communication is exchanging information so that each person clearly understands the other. If you
do not understand one another, no communication has occurred.
It is challenging to teach the skill of interviewing because initially most people think it is common
sense. They assume that if they can talk and hear, they can communicate. But much more than
talking and hearing is necessary. Communication is based on behavior, conscious and unconscious,
and all behavior has meaning.
Sending
Likely you are most aware of verbal communication—the words you speak, vocalizations, the tone
of voice. Nonverbal communication is as important as verbal communication. This is your body
language—posture, gestures, facial expression, eye contact, foot tapping, touch, even where you
place your chair. Because nonverbal communication is under less conscious control than verbal
communication, it may be more reflective of true feelings. A skilled interviewer will notice
nonverbal behaviors and recognize the importance of potentially unconscious messages.
Receiving
Being aware of the messages you send is only part of the process. Your words and gestures must be
interpreted by the receiver. Although you have a specific meaning in mind, the receiver may not
understand the message as it was meant. The receiver uses his or her own interpretations of your
words. These interpretations are based on past experiences, culture, and self-concept. Physical and
emotional states also play a role in a person’s interpretation. Your context and that of the receiver
may not coincide, which can cause frustration and conflict. Your message can be sabotaged by the
listener’s bias or any preconceived notions. It takes mutual understanding by the sender and
receiver to have successful communication.
Even greater risk for misunderstanding exists in the health care setting than in a social setting.
The client’s frame of reference is narrowed and focused on illness. The client usually has a health
problem, and this factor emotionally charges your professional relationship. It intensifies the
communication because the person feels dependent on you to get better.
Communication is one of the most important basic skills that can be learned and refined when
you are a beginning practitioner. It is a tool, as basic to quality health care as the tools used in
physical assessment. To maximize your communication skills, first you need to be aware of internal
and external factors and their influence.
Internal Factors
Internal factors are those specific to you, the examiner. As you cultivate communication skills, you
need to focus on the four inner factors of liking others, empathy, the ability to listen, and self-
awareness.
Liking Others
One essential factor for a successful entry into a helping profession is a genuine liking of other
people. This means a generally optimistic view of people—an assumption of strengths and a
tolerance for weaknesses. An atmosphere of warmth and caring is necessary, and the client must
believe that he or she is accepted unconditionally.
The respect for other people extends to respect for personal control over health and health care
decision making. Your goal is to help clients be increasingly responsible for themselves. You wish
74
to promote personal growth, and you have the health care resources to offer. Clients must choose
how to apply resources and make health-related changes; you need to respect their choice to follow
or disregard recommendations.
Empathy
Empathy means viewing the world from the other person’s inner frame of reference while
remaining you. It is a recognition and acceptance of the other person’s feelings without criticism.
Empathy is described as the ability to understand and be sensitive to the feelings of someone else.
Empathy does not mean that you lose yourself in the other person at your own expense. By losing
yourself, you cease to be useful. Empathy is the ability to recognize how someone perceives his or
her world.
The Ability to Listen
Listening is not a passive role in the communication process; it is active and demanding. Listening
requires complete and focused attention. You are not only hearing the person’s words but also
interpreting their meaning, asking follow-up questions, and ensuring a thorough understanding of
what the person is telling you. If you are preoccupied with your own needs or those of other clients,
you may miss important information. The needs of the person you are interviewing should be your
sole concern.
Active listening is the route to understanding. Listen not only to what the person says but also to
the way he or she says it. You also need to pay attention to what the person is not saying. Be aware
of nonverbal communication and ask follow-up questions as appropriate, but do not interrupt. The
story may not come out in the order you ask it, but it is important to allow the person to speak from
his or her outline. As the person speaks, be aware of the way the story is told. Did he or she have
any difficulty with language? What was the tone of voice? What is the person leaving out?
Self-Awareness
To effectively communicate with others, you must know yourself. Understanding your personal
biases, prejudices, and stereotypes is an important part of developing your skills as an interviewer.
By knowing your behaviors and responses, you become aware of how some unintentional actions
can have a negative impact on your communication. You may have strong feelings about teen
pregnancy, sexual orientation, or illicit drug use. By recognizing your biases and values, you can
put them aside when dealing with people who may have a very different set of values. Part of your
job as an interviewer is to recognize and set aside personal prejudices so that you can effectively
care for all types of clients. If you recognize that you cannot put aside certain values, you may have
to ask a colleague to step in and care for a client. For example, you are a devout Catholic who feels
strongly that abortion is wrong. You are preparing to interview a 15-year-old who is 8 weeks
pregnant. You know that she has made the appointment to discuss her options. If you are unable to
put aside your belief that abortion is wrong and cannot counsel the young woman effectively, you
may need to ask a colleague to complete the interview so that the young woman is presented with
all options in an unbiased manner.
External Factors
Prepare the physical setting. The setting may be in a hospital room, an examination room in an
office or clinic, or the person’s home (where you have less control). In any location, optimal
conditions are important to have a smooth interview.
Ensure Privacy
Aim for geographic privacy—a private room in the hospital, clinic, office, or home. If geographic
privacy is unavailable, create “psychological privacy,” using curtained partitions, but make sure
that the person feels comfortable with the privacy provided. Privacy extends to ensuring that the
client is comfortable with the people in the room. Consider a teenager being interviewed before an
annual physical. You will need to ask questions about risky behaviors, including alcohol, illicit
drugs, and sexual behaviors. Do you think the teenager is going to be forthright and honest with a
parent or guardian in the room? He or she may not be comfortable asking the parent or guardian to
leave; however, it is your job to advocate for the teenager, which may include asking a parent or
75
guardian to step out during the interview.
Refuse Interruptions
Most people resent interruptions except in cases of an emergency. You need to concentrate and
establish rapport. An interruption can destroy in seconds what you have spent many minutes
building up. If you anticipate an interruption, let the person know ahead of time. Inform colleagues
of the interview and the need to minimize interruptions.
Physical Environment
• Set the room temperature at a comfortable level.
• Provide sufficient lighting so that you can see each other clearly,
but avoid strong, direct lighting that may cause squinting.
• Secure a quiet environment. Turn off televisions, radios, and any
unnecessary equipment.
• Remove distracting objects or equipment. It is appropriate to
leave some professional equipment (otoscope/ophthalmoscope,
blood pressure manometer) in view, but avoid clutter such as
stacks of mail, other files, or your lunch. The room should
advertise a trained professional.
• Place the distance between you and the client at 4 to 5 feet.
Personal space is any space within 4 feet of a person. Encroaching
on personal space can cause anxiety, but if you position yourself
farther away, you may seem aloof and distant. The personal
reaction bubble depends on a variety of factors, including culture,
gender, and age. (See Table 3.1 for information on personal space.)
TABLE 3.1
Functional Use of Space
Zone Remarks
Intimate zone (0 to ft) Visual distortion occurs
Best for assessing breath and body odors
Personal distance ( to 4 ft) Perceived as an extension of the self, similar to a bubble
Voice moderate
Body odors inapparent
No visual distortion
Much of physical assessment occurs at this distance
Social distance (4 to 12 ft) Used for impersonal business transactions
Perceptual information much less detailed
Much of interview occurs at this distance
Public distance (12+ ft) Interaction with others impersonal
Speaker’s voice must be projected
Subtle facial expressions imperceptible
From Hall, E. (1963). Proxemics: the study of man’s spatial relations. In Galdston, I. (Ed.). Man’s image in medicine and
anthropology. New York: International University Press, pp. 109-120.
• Arrange equal-status seating (Fig. 3.2). Both you and the client
should be comfortably seated, at eye level. Placing the chairs at 90
degrees is good because it allows the person either to face you or
to look straight ahead from time to time. Make sure that you avoid
facing a client across a desk because this creates a barrier. Most
76
important, avoid standing. Standing does two things: (1) it
communicates your haste, and (2) it assumes superiority. Standing
makes you loom over the client as an authority figure. When you
are sitting, the person feels some control in the setting.
3.2 Equal-status seating.
• When interviewing a hospitalized bedridden person, arrange a
face-to-face position, and avoid standing over him or her (Fig. 3.3).
The person should not be staring at the ceiling but should have
access to eye contact. Without eye contact the person loses the
visual message of your communication.
3.3 Avoid this position. (Potter et al., 2015.)
Dress
• The client should remain in street clothes during the interview
except in an emergency. A hospital gown causes a power
differential and may make the person feel exposed and
77
uncomfortable. Establish rapport before asking the person to
change into a gown.
• Your appearance and clothing should be appropriate to the
setting and should meet conventional professional standards: a
uniform or lab coat over conservative clothing, a name tag, and
neat hair. Avoid extremes.
Note-Taking
Some use of history forms and note-taking may be unavoidable (see Fig. 3.2). When you sit down
later to record the interview, you cannot rely completely on memory to furnish details of previous
hospitalizations or the review of body systems. But be aware that excessive note-taking during the
interview has disadvantages:
• It breaks eye contact too often.
• It shifts your attention away from the person, diminishing his or
her sense of importance.
• Recording everything a person says may cause you to ask him or
her to slow down, or the person may slow his or her tempo to
allow for you to take notes. Either way, the client’s natural mode of
expression is lost.
• It impedes your observation of the client’s nonverbal behavior.
• It is threatening to the client during the discussion of sensitive
issues (e.g., alcohol and illicit drug use, number of sexual partners,
or incidence of abuse).
Keep note-taking to a minimum and try to focus your attention on the person. Any recording you
do should be secondary to the dialogue and should not interfere with the person’s spontaneity.
With experience you will rely less on note-taking. The use of standardized forms can decrease note-
taking by providing check boxes for some of the information.
Electronic Health Record (EHR)
Direct computer recording of the health record has moved into nearly all health care settings.
Mandates established by the federal government require health care organizations to utilize EHRs
to improve quality and safety. The use of an EHR eliminates handwritten clinical data and provides
access to online health education materials. Although computer entry facilitates data retrieval from
numerous locations, this new technology poses problems for the provider-client relationship. EHR
use improves documentation of biomedical information, but psychosocial and emotional
information are not always captured.13 Health care providers must capture biomedical,
psychological, and emotional information in order to develop therapeutic relationships with clients.
See Chapter 30 for more information about EHR.
Do not let the computer screen become a barrier between you and the client. Begin the interview
as you usually would by greeting the person, establishing rapport, and collecting his or her
narrative story in a direct face-to-face manner. Explain the computerized charting, and position the
monitor so that the client can see it. Typing directly into the computer may ease entry of some
sections of history such as past health occurrences, family history, and review of systems (see
Chapter 4). Be aware that the client narrative, emotional issues, and complex health problems can
only be addressed by the reciprocal communication techniques and client-centered interviewing
presented in this chapter.
78
Techniques of Communication
Introducing the Interview
You may be nervous at the beginning of the interview. Keep in mind that the client probably is
nervous as well. Keep the introduction short and formal. Address the person using his or her
surname, and shake hands if appropriate. Unless the client directs you otherwise, avoid using the
first name during the interview. Automatic use of the first name is too familiar for most adults and
lessens dignity, but first names can be used with children and adolescents. You can also ask the
person about his or her preference. If you are unsure how to correctly pronounce the name, ask.
Interest in pronunciation shows respect.
Introduce yourself and state your role in the agency (if you are a student, say so). Give the reason
for the interview:
“Mrs. Sanchez, I would like to talk about what caused you to come to the hospital today and get an
update on your overall health status.”
“Mr. Craig, I want to ask you some questions about your previous medical history, family history,
and any current complaints before we complete your physical examination.”
If the person is in the hospital, more than one health team member may be collecting a history.
This repetition can be disconcerting because some people think that multiple clinicians asking the
same questions indicates incompetence or a refusal to take the time to review the chart. Make sure
that you indicate the reason for the interview to lessen the client’s exasperation, and review notes
from other health care team members before beginning the interview. Know which other team
members the client has spoken to, and be able to tell him or her why your additional interview is
necessary. Perhaps you are obtaining a full health history (including family history and review of
systems) while your colleague obtained a focused history about the reason for seeking care.
After a brief introduction, ask an open-ended question (see the following section), and then let
the person proceed. You do not need much friendly small talk to build rapport. This is not a social
visit; the person wants to talk about some concern and wants to get on with it. You build rapport
best by letting him or her discuss the concern early and by actively listening throughout the
interview.
The Working Phase
The working phase is the data-gathering phase. Verbal skills for this phase include your ability to
form questions appropriately and your responses to the answers given by the client. You will likely
use a combination of open-ended and closed questions during the interview.
Open-Ended Questions
The open-ended question asks for narrative information. It states the topic to be discussed but only
in general terms. Use it to begin the interview, to introduce a new section of questions, and
whenever the person introduces a new topic.
“Tell me how I can help you.”
“What brings you to the hospital?”
“You mentioned shortness of breath. Tell me more about that.”
The open-ended question is unbiased; it leaves the person free to answer in any way. This type of
question encourages the person to respond in paragraphs and give a spontaneous account in any
order chosen. It lets the person express himself or herself fully.
As the person answers, make eye contact and actively listen. Typically he or she will provide a
short answer, pause, and then look at you for direction on whether to continue. How you respond
to this nonverbal question is key. If you pose new questions on other topics, you may lose much of
79
the initial story. Instead lean forward slightly toward the client and make eye contact, looking
interested. With your posture indicating interest, the person will likely continue his or her story. If
not, you can respond to his or her statement with “Tell me more about…” or “Anything else?”
Closed or Direct Questions
Closed or direct questions ask for specific information. They elicit a one- or two-word answer, a
“yes” or “no,” or a forced choice. Whereas the open-ended question allows the client to have free
rein, the direct question limits his or her answer.
Direct questions help you elicit specific information and are useful to fill in any details that were
initially left out after the person’s opening narrative. For example, you may be interviewing a client
who suffers from migraines. Your initial open-ended comment of “Tell me about your headaches”
elicited narrative information about the headaches. You follow up with a direct question—“Where
are your headaches located?”—to obtain specific information that was initially left out of the
narrative.
Direct questions are also useful when you need specific facts such as past medical history or
during the review of systems. You need direct questions to speed up the interview. Asking all open-
ended questions would be unwieldy and extend the interview for hours, but be careful not to
overuse closed questions. Follow these guidelines:
1. Ask only one direct question at a time. Avoid bombarding the client with long lists: “Have
you ever had pain, double vision, watering, or redness in the eyes?” Avoid double-barreled
questions, such as “Do you exercise and follow a diet for your weight?” The client will not
know which question to answer. And if the client answers “yes,” you will not know which
question he or she has answered.
2. Choose language the client understands. You may need to use regional phrases or
colloquial expressions. For example, “running off” means running away in standard English,
but it means diarrhea to natives of the Appalachian region.
Verbal Responses—Assisting the Narrative
You have asked the first open-ended question, and the client begins to answer. Your role is to
encourage free expression while keeping the person focused. Your responses help the teller amplify
the story.
Some people seek health care for short-term or relatively simple needs. Their history is direct and
uncomplicated; for these people you may require only a subset of your full communication arsenal.
Other people have a complex story, a long history of a chronic condition, or accompanying
emotions that will require you to pull out all the stops during your interaction. There are nine types
of verbal responses. The first five responses (facilitation, silence, reflection, empathy, clarification)
involve your reactions to the facts or feelings that the person has communicated (Fig. 3.4). In the last
four responses (confrontation, interpretation, explanation, summary), you start to express your own
thoughts and feelings. In the first five responses the client leads; in the last four responses you lead.
Study the array of possible responses in Table 3.2.
80
3.4 Showing empathy.
TABLE 3.2
Examiner’s Verbal Responses
Response Reason for Use Example(s)
Client’s Perspective
Facilitation,
general leads,
minimal cues
• Encourages client to say more
• Shows person you are interested
• Mm-hmmm, go on, uh-huh
• Maintaining eye contact, shifting forward
• Nodding yes
Silence • Communicates that client has time to think
• Silence can be uncomfortable for novice examiner,
but interruption can make client lose his or her train
of thought
• Provides you with chance to observe client and note
nonverbal cues
• Waiting for response without interruption
• Sitting quietly; don’t fidget
• Counting silently 1 to 10
Reflection • Echoes client’s words by repeating part of what
person has just said
• Can help express feelings behind words
• Mirroring client’s words can help person elaborate
on problem
• Client: It’s so hard having to stay in bed during my pregnancy. I
have kids at home I’m worried about.
• Response: You feel worried and anxious about your children?
Empathy • Names a feeling and allows its expression
• Allows person to feel accepted and strengthens
rapport
• Useful in instances when client hasn’t identified the
feeling or isn’t ready to discuss it
• Client (sarcastically): This is just great! I own a business, direct
my employees; now I can’t even go to the bathroom without help.
• Response: It must be hard—one day having so much control and
now feeling dependent on someone else.
• Other responses include: This must be very hard for you or just
placing hand on person’s arm (see Fig. 3.4)
Clarification • Useful when person’s word choice is ambiguous or
confusing
• Summarize person’s words, simplify the statement,
and ensure that you are on the right track
• Response: The heaviness in your chest occurs with walking up 1
flight of stairs or more than 1 block, but it stops when you rest. Is
that correct?
• Client: Yes, that’s it.
Examiner’s Perspective
Confrontation • Clarifying inconsistent information
• Focusing client’s attention on an observed behavior,
action, or feeling
• You look sad, or You sound angry.
• Earlier you said that you didn’t drink, but just now you said you go
out every night after work for 1-2 beers.
• When I press here, you grimace, but you said it doesn’t hurt.
Interpretation • Links events, makes associations, and implies cause
• Not based on direct observations but instead on
inference or conclusion
• Your interpretation may be incorrect but helps
prompt further discussion
• It seems that every time you feel the stomach pain, you have some
type of stress in your life.
• Client: I don’t want any more treatment, but I can’t seem to tell the
doctor I’m ready to stop.
• Response: Could it be that you’re afraid of her reaction?
Explanation • Informing person
• Sharing factual and objective information
• You order your dinner from the menu provided, and it takes
approximately 30 minutes to arrive.
• You may not eat or drink for 12 hours before your blood test because
the food may change the results.
Summary • Condenses facts and validates what was discussed
during the interview
• Signals that termination of interview is imminent
• Both client and examiner should be active
participants
• Review pertinent facts
• Allow client time to make corrections
Ten Traps of Interviewing
The verbal responses presented in Table 3.2 are productive and enhance the interview. Now we will
81
consider traps, which are nonproductive verbal and nonverbal messages. Because you want to help
your client, it is easy to fall into the traps and send negative verbal messages that may do the
opposite of what you intended by cutting off communication. Be aware of the following traps, and
work to avoid them as you establish your communication style.
1 Providing False Assurance or Reassurance
A pregnant woman says, “I’ve been spotting on and off all day, and I haven’t felt the baby kick. I
just know I’m going to miscarry.” Your automatic response may be to provide reassurance, “Don’t
worry. I’m sure you and the baby will be fine.” Although this helps relieve your anxiety and gives
you the sense that you have provided comfort, it actually trivializes the woman’s anxiety and closes
off communication. You have also just promised something that may not be true, which can
diminish rapport. Consider these responses:
“You’re really worried about your baby, aren’t you?”
“It must be hard to wait for the doctor. Is there anything I can get you or anything that you’d like to
talk about?”
These responses acknowledge the feeling and open the door for more communication.
A genuine, valid form of reassurance does exist. You can reassure clients that you are listening to
them, that you understand them, that you have hope for them, and that you will take good care of
them.
Client: “I feel so lost here since they transferred me to the medical center. My family lives too far
away to visit, and no one here knows me or cares.”
Response: “I care what happens to you. I will be here all day today and for the next 3 days. Please
call if you need anything.”
This type of reassurance makes a commitment to the client, and it can have a powerful impact.
2 Giving Unwanted Advice
It is important as a health care provider to recognize when giving advice is warranted and when it
should be avoided. People often seek health care because they want professional advice. A parent
may ask how to care for a child with chickenpox, or an older man may ask if it is appropriate to
receive a pneumonia vaccine. These are straightforward requests for information, and you respond
by providing the appropriate information.
But if advice is based on a hunch or feeling or is your personal opinion, then it is most likely
inappropriate. Consider a young woman who has just met with her physician about her infertility
issues: “Dr. Compton just told me I have to have surgery and that, if I don’t, I won’t be able to get
pregnant. What would you do?” If you provide an answer, especially if the answer begins with “If I
were you …” you would be falling into a trap. You are not your client and therefore cannot make
decisions for her. Providing an answer shifts accountability to you instead of the client. The woman
must work out her own decision. So what do you do?
Response: What are your concerns about the recommendation?
Woman: I’m terrified of being put to sleep. What if I don’t wake up?
Now you know her real concern and can help her deal with it. She will have grown in the process
and may be better equipped to make her decision.
When asked for advice, other preferred responses are:
“What are the pros and cons of ________ [this choice] for you?”
82
“What is holding you back?”
Although it is quicker just to give advice, take the time to involve the patient in a problem-
solving process.
3 Using Authority
“Your doctor/nurse knows best” is a response that promotes dependency and inferiority. You
effectively diminish the client’s concerns with one short sentence, and you cut off communication.
Using authority should be avoided. Although you may have more professional knowledge than the
client, you both have equally important roles since the client must make the final decision about his
or her health.
4 Using Avoidance Language
People use euphemisms instead of discussing unpleasant topics. For example, people use “passed
on” or “has gone to a better place” to avoid the reality of dying. Using euphemisms promotes the
avoidance of reality and allows people to hide their feelings. Not talking about uncomfortable
topics doesn’t make them go away but instead makes them even more frightening. The best way to
deal with frightening or uncomfortable topics is by using direct language.
5 Distancing
Distancing is the use of impersonal speech to put space between a threat and the self: “There is a
lump in the left breast.” By using “the” instead of “your,” you are allowing the woman to deny any
association with her diseased breast and protect herself from it. Health professionals use distancing
to soften reality, but in actuality it may communicate that you are afraid of the procedure or
disease. Clients use distancing to avoid admitting that they have a problem: “My doctor told me
that the prostate was enlarged.” Using specific language and blunt terms indicates that you are not
fearful of the disease or procedure and may decrease anxiety and help the client cope with the
reality of the situation.
6 Using Professional Jargon
The medical profession is fraught with jargon that sounds exclusionary and paternalistic. It is
important to adjust your vocabulary to ensure understanding without sounding condescending.
Just because your client uses medical jargon, don’t assume that he or she understands the correct
meaning. Some people think “hypertensive” means tense. This misunderstanding may cause them
to take their medication only when they are feeling tense and stressed instead of taking it all the
time. Misinformation must be corrected immediately to ensure compliance.
7 Using Leading or Biased Questions
Asking a client, “You don’t smoke, do you?” or “You don’t ever have unprotected sex, correct?”
implies that one answer is “better” than another. If the client wants to please you, he or she will
either answer in a way corresponding to your values or feel guilty when he or she must admit the
other answer. The client feels that he or she risks your disapproval by not answering the question
“correctly.” If the client feels dependent on you for care, he or she won’t want to alienate you and
may not answer truthfully. Make sure that your questions are unbiased, and do not lead clients to a
certain “correct” answer. For example, you might instead ask, “Do you smoke?” or “When you
have sexual intercourse, do you use protection?”
8 Talking Too Much
Some examiners positively associate helpfulness with verbal productivity. If the air has been thick
with their oratory and advice, these examiners leave thinking that they have met the client’s needs.
Just the opposite is true. Eager to please the examiner, the client lets the professional talk at the
expense of his or her need to express himself or herself. A good rule for every interviewer is to
listen more than you talk.
9 Interrupting
When you think you know what the client is going to say next, it is easy to cut him or her off and
finish the statement. Unfortunately you are not proving that you are clever, but you are signaling
83
impatience or boredom. Related to interruption is preoccupation with yourself. As the client speaks,
you may be thinking about what to say next. If you are focused on your next statement instead of
his or her statements, you are unable to fully understand what the person is saying. The goal of the
interview is to include two people listening and two people speaking. Leave at least a second of
space between the end of the client speaking and your next statement. This ensures that the client
has finished.
10 Using “Why” Questions
Children ask why questions constantly. Why is the sky blue? Why can’t I have a cookie for dinner?
Their motive is an innocent search for information. The adult’s use of “why” questions usually
implies blame and condemnation; it puts the person on the defensive. Consider your use of “why”
questions in the health care setting. “Why did you take so much medication?” Or “Why did you
wait so long before coming to the hospital if you were having chest pain?” The use of a “why”
question makes the interviewer sound accusatory and judgmental. By using a “why” question, the
client must produce an excuse to rationalize his or her behavior. To avoid this trap, say, “I see you
started to have chest pain early in the day. What was happening between the time the pain started
and the time you came to the emergency department?”
Nonverbal Skills
As a novice interviewer you may be focused on what the client says, but listening with your eyes is
just as important as listening with your ears. Nonverbal modes of communication include physical
appearance, posture, gestures, facial expression, eye contact, voice, and touch. They are important
in establishing rapport and conveying information.1 They provide clues to understanding feelings.
When nonverbal and verbal messages are congruent, the verbal message is reinforced. When they
are incongruent, the nonverbal message tends to be the true one because it is under less conscious
control.
Physical Appearance
We have all noted people who simply look sick without specific signs that lead to a precise
diagnosis. As a health care provider, it is important that you consider physical appearance when
you first encounter a client. Inattention to dressing or grooming suggests that the person is too sick
to maintain self-care or has an emotional dysfunction such as depression. Choice of clothing also
sends a message, projecting such varied images as role (student, worker, or professional) or attitude
(casual, suggestive, or rebellious).
You are concerned with the client’s image, and he or she is just as concerned with yours. Your
appearance sends a message to the client. Professional dress varies among agencies and settings.
Professional uniforms can create a positive or a negative image. Whatever your personal choice in
clothing or grooming is, the aim should be to convey a competent, professional image and should
follow agency guidelines (Fig. 3.5).
84
3.5
Posture
On beginning the interview, note the client’s position. An open position with extension of large
muscle groups shows relaxation, physical comfort, and a willingness to share information. A closed
position with arms and legs crossed looks defensive and anxious. Changes in posture during the
interview can also suggest a different comfort level with new topics. For example, if your client
began the interview in an open posture but immediately assumes a closed posture when asked
about his or her sexuality, he or she may be uncomfortable with the new topic.
Make sure that you are aware of your own posture. Assuming a calm, relaxed posture conveys
interest. On the other hand, standing and hastily filling out forms while peeking at your watch
communicates that you are busy with many more important things than interviewing this client.
Even when your time is limited, it is important to appear unhurried. Sit down, even if it is only for a
few minutes, and look as if nothing else matters except this client. If you are aware of a potential
emergency that will require interruption, let the client know when you enter the room.
Gestures
Gestures send messages; therefore make sure that you are aware of your own gestures while also
noting those of the client. Nodding the head or openly turning out the hand shows acceptance,
attention, or agreement, whereas wringing the hands or picking the nails often indicates anxiety.
Hand gestures can also reinforce descriptions of pain. When describing crushing substernal chest
pain, the client often holds a fisted hand in front of the sternum. Sharply localized pain is often
indicated by using one finger. Movements such as bouncing a leg, clicking a pen, playing with hair,
or drumming fingers can distract the client and cause him or her to lose focus. Make sure that you
know if you tend to fidget, and work on controlling that urge during interviews.
Facial Expression
Typically the face and facial expression are some of the first things we notice when we meet
someone. The face reflects our emotions and conditions. As an interviewer it is important to note
your client’s facial expression. Does it match what he or she is saying, or is it incongruous?
As you pay attention to the client’s expression, it is equally important that you are aware of your
own facial expression. Your expression should reflect a person who is attentive, sincere, and
interested. Avoid expressions that may be construed as boredom, disgust, distraction, criticism, or
disbelief. A negative facial expression can severely damage your rapport with the client and may
85
lead him or her to stop communicating.
Eye Contact
Lack of eye contact suggests that the person is shy, withdrawn, confused, bored, intimidated,
apathetic, or depressed. This applies to examiners too. You should aim to maintain eye contact, but
do not stare at the person. Do not have a fixed, penetrating look but rather an easy gaze toward the
person’s eyes, with occasional glances away. One exception to this is when you are interviewing
someone from a culture that avoids direct eye contact.
Voice
Although spoken words have meaning, it is important that you are keenly aware of the tone of your
voice and that of the client. Meaning comes not only from the words spoken, but also from the tone
of voice, the intensity and rate of speech, the pitch, and any pauses. The tone of voice may show
sarcasm, disbelief, sympathy, or hostility. People who are anxious often speak louder and faster
than normal. A soft voice may indicate shyness or fear, whereas a loud voice may indicate that the
person is hearing impaired.
Even the use of pauses conveys meaning. When your question is easy and straightforward, a
client’s long, unexpected pause indicates that the person is taking time to think of an answer. This
raises some doubt as to the honesty of the answer or whether the client heard the question. When
unusually frequent and long pauses are combined with speech that is slow and monotonous and a
weak, breathy voice, it indicates depression.
Touch
The meaning of physical touch is influenced by the person’s age, gender, cultural background, past
experience, and current setting. The meaning of touch is easily misinterpreted. In most Western
cultures physical touch is reserved for expressions of love and affection or for rigidly defined acts of
greeting. Do not use touch during the interview unless you know the person well and are sure how
it will be interpreted.
In summation, an examiner’s nonverbal messages that show attentiveness and unconditional
acceptance are productive and help build rapport. Defeating, nonproductive nonverbal behaviors
are those of inattentiveness, authority, and superiority (Table 3.3).
TABLE 3.3
Nonverbal Behaviors of the Interviewer
Positive Negative
Appropriate professional
appearance
Appearance objectionable to client
Equal-status seating Standing above the client
Close proximity to client Sitting behind desk, far away, turned away
Relaxed, open posture Tense posture
Leaning slightly toward person Slouched in chair
Occasional facilitating gestures Critical or distracting gestures: pointing finger, clenched fist, finger-tapping, foot-swinging, looking at
watch
Facial animation, interest Bland expression, yawning, tight mouth
Appropriate smiling Frowning, lip biting
Appropriate eye contact Shifty, avoiding eye contact, focusing on notes
Moderate tone of voice Strident, high-pitched tone
Moderate rate of speech Rate too slow or too fast
Appropriate touch Too frequent or inappropriate touch
Closing the Interview
The session should end gracefully. An abrupt or awkward closing can destroy rapport and leave
the person with a negative impression of the interaction. To ease into the closing, ask the person:
“Is there anything else you would like to mention?”
“Are there any questions you would like to ask?”
86
“We’ve covered a number of concerns today. What would you most like to accomplish?”
This gives the person the final opportunity for self-expression. Once this opportunity has been
offered, you will need to make a closing statement that indicates that the end of the interview is
imminent, such as, “Our interview is just about over.” At this point no new topics should be
introduced, and no unexpected questions should be asked. This is a good time to give your
summary of what you have learned during the interview. The summary is a final statement of what
you and the client agree the health state to be. It should include positive health aspects, any health
problems that have been identified, any plans for action, and an explanation of the subsequent
physical examination. As you part from clients, thank them for the time spent and for their
cooperation.
87
Developmental Competence
Interviewing the Parent or Caregiver
When your client is a child, you must build rapport with two people—the child and the
accompanying caregiver. Greet both by name, but with a younger child (1 to 6 years old) focus
more on the caregiver. Ignoring the child temporarily allows him or her to size you up from a safe
distance. The child can use this time to observe your interaction with the caregiver. If the child sees
that the caregiver accepts and likes you, he or she will begin to relax (Fig. 3.6).
3.6
Begin by interviewing the caregiver and child together. If any sensitive topics arise (e.g., the
parents’ troubled relationship or the child’s problems at school or with peers), explore them later
when the caregiver is alone. Provide toys to occupy a young child as you and the caregiver talk.
This frees the caregiver to concentrate on the history and gives you information about the child’s
level of attention span and ability for independent play. Throughout the interview observe the
caregiver-child interaction.
For younger children, the parent or caregiver will provide all or most of the history. Thus you are
collecting the child’s health data from the caregiver’s frame of reference, which typically is
considered reliable. Most caregivers have the child’s well-being in mind and will cooperate with
you to enhance it. Bias can occur when caregivers are asked to describe the child’s achievements or
when their ability to provide proper care seems called into question. For example, if you say “His
fever was 103, and you didn’t bring him in?” you are implying a lack of skills, which puts the
caregiver on the defensive and increases anxiety. Instead use open-ended questions that increase
description and defuse threat, such as “What happened when the fever went up?”
A parent with more than one child has more than one set of data to remember. Be patient as the
parent sorts through his or her memory to pull out facts of developmental milestones or past
history. A comprehensive history may be lacking if the child is accompanied by a family friend or
daycare provider instead of the primary caregiver.
When asking about developmental milestones, avoid judgmental behavior or inferring that the
behavior occurred late. Parents are understandably proud of their child’s achievements and are
sensitive to insinuations that these milestones occurred late. “So he didn’t say any words until he
was 15 months old? Did you take him to speech therapy?” Instead consider saying, “I see that Jon
began speaking when he was 15 months old. How is his speech progressing now that he is 2 years
old?”
Always refer to the child by name and ensure that he or she is included in the interview as
appropriate. Refer to the parent by his or her proper surname instead of “Mom” or “Dad.”
88
Remember not to make any assumptions. The person accompanying the child may not be the
biological mother or father, so it is important to ask. Don’t assume that a couple bringing in a child
are mom and dad. Also don’t assume that two women bringing a child in are mom and aunt; they
may be the child’s two mothers. If a same-sex couple brings the child, do not ask which one is the
real parent. This downplays the importance of both parents. If you need a family history from the
biological parent in order to develop a genogram (see Chapter 4), consider the following question:
“We need to review family history, so I will be asking questions about medical conditions of family
members biologically related to Jon.”
Most of your communication is with the caregiver of a younger child, but make sure that you
don’t ignore the child completely. Allow him or her to size you up, but engage him or her in
conversation as well. Contact made during the nonthreatening interview can ease the physical
examination. Ask the child about the toy with which he or she is playing or about the special toy
brought from home. Make sure that you stoop to meet the child at his or her eye level. Your size can
seem overwhelming to young children, and standing at your full height may emphasize his or her
smallness.
Nonverbal communication is even more important to children than it is to adults. Children are
quick to pick up feelings, anxiety, or comfort from nonverbal cues. Keep your physical appearance
neat and clean, and avoid formal uniforms that distance you. Keep your gestures slow, deliberate,
and close to your body. Children are frightened by quick or grandiose gestures. Do not try to
maintain constant eye contact; this feels threatening to a small child. Use a quiet, measured voice,
and choose simple words in your speech. Considering the child’s level of language development is
valuable in planning your communication.
Stages of Cognitive Development
A child’s thought process, perception of the world, and emotional responses to situations are very
different from those of an adult. As an interviewer it is important that you consider the stage of
development as you approach the child and converse with him or her. Piaget’s cognitive-
developmental theory can help you understand the child’s current level and construct your
approach to the interview (Table 3.4). Although this provides a guide, keep in mind that the ages
are approximated and will differ slightly based on the maturity level of the child. Also keep in mind
that you may be approaching children who are in crisis as a result of illness. Regression is a
common response during times of acute stress; therefore a child may regress in his or her ability to
communicate at this time.1
TABLE 3.4
Stages of Cognitive Development
Age Piaget’s Stage Characteristics Language Development
Birth to
2 years
Sensorimotor Infant learns by manipulating objects
At birth reflexive communication, then moves
through 6 stages to reach actual thinking
Presymbolic
Communication largely nonverbal
Vocabulary of more than 4 words by 12 months, increase to
>200 words and use of short sentences before age 2 years
2-6
years
Preoperational Beginning use of symbolic thinking
Imaginative play
Masters reversibility
Symbolic
Actual use of structured grammar and language to
communicate
Uses pronouns
Average vocabulary >10,000 words by age 6 years
7-11
years
Concrete
operations
Logical thinking
Masters use of numbers and other concrete
ideas such as classification and conservation
Mastery of passive tense by age 7 years and complex
grammatical skills by age 10 years
12+
years
Formal
operations
Abstract thinking. Futuristic; takes broader, more
theoretical perspective
Near adult-like skills
Adapted from Piaget J. (1972). The child’s conception of the world, Savage, MD: Littlefield, Adams. In Arnold, E. C., & Boggs, K. U.
(2016). Interpersonal relationships: professional communication skills for nurses (7th ed.). St. Louis: Saunders.
Communicating With Different Ages
The Infant (Birth to 12 months)
Infants use coos, gurgles, facial expressions, and cries to identify their needs. Although you will not
“interview” an infant, it is important to establish a rapport. Nonverbal communication is the
89
primary method of communicating with infants. When their needs are met, most infants will be
calm and relaxed. When they are frightened, hungry, tired, or uncomfortable, they will cry or be
difficult to console. Respond quickly to changes in infant communication. If a baby begins to cry,
respond to the communication. Use gentle handling and a quiet, calm voice. Face infants directly.
They are fascinated by adult faces and enjoy looking at them, but remember that eyesight does not
develop right away; thus you will need to hold them close. As infants get older, they may begin to
exhibit stranger anxiety and will be more cooperative when the caregiver is kept in view or allowed
to hold them during the examination.
The Toddler (12 to 36 months)
At this stage children are beginning to develop communication skills. At first they communicate
with one- or two-word sentences and a limited vocabulary, which may include grunts and pointing
intertwined with words. Language progresses from a vocabulary of about two words at 1 year to a
spurt of about 200 words by 2 years. Then the 2-year-old begins to combine words into simple two-
word phrases—“all gone,” “me up,” “baby crying.” This is telegraphic speech, which is usually a
combination of a noun and a verb and includes only words that have concrete meaning. Interest in
language is high during the second year, and a 2-year-old seems to understand all that is said to
him or her.
Older toddlers want to know why; therefore it is important that you provide a simple explanation
of what you want. You can help them communicate by labeling their emotions and expanding on
their one- or two-word sentences. Give toddlers one direction at a time, keeping it simple, and
provide warnings before transitions when possible. Toddlers also struggle for control and
autonomy; therefore provide simple choices when possible.4
The Preschooler (3 to 6 years)
A 3- to 6-year-old is egocentric. He or she sees the world mostly from his or her own point of view.
Everything revolves around him or her. Only the child’s own experience is relevant; thus telling
what someone else is doing will not have any meaning.
A 3-year-old uses more complex sentences with more parts of speech. Between 3 and 4 years of
age the child uses three- to four-word telegraphic sentences containing only essential words. By 5
to 6 years, the sentences are six to eight words long, and grammar is well developed.
Preschoolers’ communication is direct, concrete, literal, and set in the present. Avoid expressions
such as “climbing the walls,” because they are easily misinterpreted by young children. Use short,
simple sentences with a concrete explanation. Take time to give a short, simple explanation for any
unfamiliar equipment that will be used on the child. Preschoolers can have animistic thinking about
unfamiliar objects. They may imagine that unfamiliar inanimate objects can come alive and have
human characteristics (e.g., that a blood-pressure cuff can wake up and bite or pinch). Preschoolers
have active imaginations, so education and explanations can be provided through play (e.g., puppet
shows, dress-up, drawings).
The School-Age Child (7 to 12 years)
A child 7 to 12 years old can tolerate and understand others’ viewpoints. This child is more
objective and realistic. He or she wants to know functional aspects—how things work and why
things are done. At this age children are beginning to recognize that things they do can affect
others. It is very important that you are nonjudgmental.
The school-age child can read. By using printed symbols for objects and events, the child can
process a significant amount of information. At this age thinking is more stable and logical. School-
age children can decenter and consider all sides of a situation to form a conclusion. They are able to
reason, but this reasoning capacity still is limited because they cannot yet deal with abstract ideas.
Children of this age-group have the verbal ability to add important data to the history. Interview
the caregiver and child together; but when a presenting symptom or sign exists, ask the child about
it first and then gather data from the caregiver. For the well child seeking a checkup, pose questions
about school, friends, or activities directly to the child.
The Adolescent
Adolescence begins with puberty. Puberty is a time of dramatic physiologic change. It includes a
90
growth spurt—rapid growth in height, weight, and muscular development; development of
primary and secondary sex characteristics; and maturation of the reproductive organs. A changing
body affects a teen’s self-concept.
Adolescents want to be adults, but they do not have the cognitive ability yet to achieve their goal.
They are between two stages. Sometimes they are capable of mature actions, and other times they
fall back on childhood response patterns, especially in times of stress. You cannot treat adolescents
as children; yet you cannot overcompensate and assume that their communication style, learning
ability, and motivation are consistently at an adult level.
Adolescents value their peers. They crave acceptance and sameness with their peers. Adolescents
think that no adult can understand them. Because of this, some act with aloof contempt, answering
only in monosyllables. Others make eye contact and tell you what they think you want to hear, but
inside they are thinking, “You’ll never know the full story about me.” This knowledge about
adolescents is apt to paralyze you in communicating with them. However, successful
communication is possible and rewarding. The guidelines are simple.
The first consideration is your attitude, which must be one of respect. Respect is the most
important thing you can communicate to the adolescent. The adolescent needs to feel validated as a
person.
Second, your communication must be totally honest. The adolescent’s intuition is highly tuned
and can detect when information is withheld. Always give them the truth. Play it straight or you
will lose them. Providing rationale for your questions will increase cooperation.
Stay in character. Avoid using language that is absurd for your age or professional role. It is
helpful to understand the jargon used by adolescents, but you cannot use those words yourself to
bond with the adolescent. You are not part of the adolescent’s peer group, and he or she will not
accept you as a peer.
Focus first on the adolescent, not on the problem. Although an adult wants to talk about the
health concern immediately, the adolescent wants to talk about himself or herself as a person. Show
an interest in the adolescent (Fig. 3.7). Ask open, friendly questions about school, activities, hobbies,
and friends. “How are things at school?” “Are you in any sports or activities?” “Do you have any pets at
home?” Refrain from asking questions about parents and family for now—these topics can be
emotionally charged during adolescence.
3.7
Do not assume that adolescents know anything about a health interview or a physical
examination. Explain every step and give the rationale. They need direction. They will cooperate
when they know the reason for the questions or actions. Encourage their questions. Adolescents are
afraid that they will sound “dumb” if they ask a question to which they assume everybody else
knows the answer.
Keep your questions short and simple. “Why are you here?” sounds brazen to you, but it is
effective with the adolescent.1 Be prepared for the adolescent who does not know why he or she is
91
there. Some adolescents are pushed into coming to the examination by a caregiver.
The communication responses described for the adult need to be reconsidered when talking with
the adolescent. Silent periods usually are best avoided. Giving adolescents a little time to collect
their thoughts is acceptable, but silence for other reasons is threatening. Also avoid reflection. If you
use reflection, the adolescent is likely to answer, “What?” They just do not have the cognitive skills
to respond to that indirect mode of questioning. Adolescents are also more sensitive to nonverbal
communication than are adults. Be aware of your expressions and gestures. Adolescents are
struggling to develop their self-identity and may withdraw from you if you make a comment that
they take as a criticism. It is important that you are cognizant of how the person may misinterpret
your questions or comments.
Later in the interview, after you have developed rapport with the adolescent, you can address the
topics that are emotionally charged, including smoking, alcohol and drug use, sexual behaviors,
suicidal thoughts, and depression. Adolescents undertake risky behaviors that may yield serious
consequences.
Adolescents will assume that health professionals have similar values and standards of behavior
as most of the other authority figures in their lives, and they may be reluctant to share this
information. You can assure them that your questions are not intended to be curious or intrusive
but cover topics that are important for most teens and on which you have relevant health
information to share. You will want to ensure privacy during these questions. Adolescents may be
more willing to share information without a caregiver in the room, but they may feel uncomfortable
asking the caregiver for privacy. As the health professional, you can ask the caregiver to step out
during the interview, explaining that privacy is important.
If confidential material is uncovered during the interview, consider what can remain confidential
and what you believe you must share for the well-being of the adolescent. State laws vary about
confidentiality with minors, and in some states caregivers are not notified about some health
treatments such as birth control prescriptions or treatment for sexually transmitted infections (STIs).
However, if the adolescent talks about an abusive home situation or risk of imminent physical
harm, state that you must share this information with other health professionals for his or her own
protection. Ask the adolescent, “Do you have a problem with that?” and then talk it through. Tell the
adolescent, “You will have to trust that I will handle this information professionally and in your best
interest.”
Finally, take every opportunity for positive reinforcement. Praise every action regarding healthy
lifestyle choices: “That’s great that you don’t smoke. It will save you lots of money that you can use on other
things, you won’t smell like smoke, and your skin won’t be so wrinkled when you get older.”
For lifestyle choices that are risky, this is a premium opportunity for discussion and early
intervention. “Have you ever tried to quit smoking?” “I’m concerned about your extra weight for someone
so young. What kind of exercise do you like?” “What do you like to drink when you’re at a party with your
friends?” “Did you use a condom the last time you had sex?” Providing information alone is not enough.
Listen to their stories in an open, nonjudgmental way. Give them a small, achievable goal, and
encourage another visit in a few weeks for follow-up on the behaviors of concern.
The Older Adult
The aging adult has the developmental task of finding the purpose of his or her own existence and
adjusting to the inevitability of death. Some people have developed comfortable and satisfying
answers and greet you with a calm demeanor and self-assurance, but be alert for the person who
sounds hopeless and despairing about life and his or her future. Symptoms of illness and worries
over finances are even more frightening when they mean physical limitation or threaten
independence.
Always address the person by his or her proper surname, and avoid using the first name. Some
older adults resent being called by their first name by younger people and think that it
demonstrates a lack of respect. Above all, avoid “elderspeak,”18 which consists of diminutives
(honey, sweetie, dearie); inappropriate plural pronouns (“Are we ready for our interview?”);
shortened sentences, slow speech rate, and simple vocabulary that sounds like baby talk; using a
singsong voice or changing the pitch of your voice.
Older adults have a longer story to tell; therefore plan accordingly. The interview will likely take
longer, and you don’t want to appear rushed. Depending on the person’s physical condition, you
may need to break the interview into more than one session, making sure to cover the most
92
important data during the first interview. You can also gather certain portions of the data such as
past history or the review of systems on a form that is filled out at home, as long as the person’s
vision and handwriting are adequate. Take time to review any forms completed at home during the
interview.
It is important to adjust the pace of the interview to the aging person (Fig. 3.8). The older person
has a great amount of background material through which to sort, and this takes some time. Allow
appropriate periods of silence during these times. Some aging people also need a greater amount of
response time to interpret the question and process the answer, so schedule more time and avoid
hurrying them. You will lose valuable data and not meet their needs if you urge them to go through
information quickly or appear rushed.
3.8
Consider physical limitations when planning the interview. Make sure that you face the person
with impaired hearing directly so that your mouth and face are fully visible. Do not shout; it does
not help and actually distorts speech. For a person in a wheelchair, make sure you move the chairs
so that an appropriate position is available for the client.
Touch is a nonverbal skill that is very important to older people. Their other senses may be
diminished, and touch grounds you in reality. In addition, a hand on the arm or shoulder is an
empathic message that communicates that you want to understand his or her problem.
Interviewing People With Special Needs
Hearing-Impaired People
As the population ages, you will encounter more people who are deaf or hard of hearing. They see
themselves as a linguistic minority, not as disabled.14 People who are hearing impaired may feel
marginalized and think that their intelligence is questioned because they cannot always understand
what is being asked of them. Although some people will tell you in advance that they have a
hearing impairment, others will not readily divulge the information. In the latter case you must use
cues to recognize potential hearing loss, such as the client staring at your mouth, not answering
unless looking at you, speaking in an unusually loud voice, or frequently requesting that you repeat
a question. Full communication is important with every client. People with a hearing impairment
may feel isolated and anxious because they cannot understand everything that is happening. Ask
the person his or her preferred way to communicate—by signing, lipreading, or writing. If the
person has hearing aids, make sure that he or she is using them properly. If you notice a hearing
impairment but no hearing aids are in use, consider a referral for a hearing test and follow-up.
A complete health history of someone who is deaf requires a sign language interpreter. Because
most health care professionals are not proficient in signing, try to find an interpreter through a
social service agency or the person’s own social network. You may use family members, but be
aware that they sometimes edit for the person. Use the same guidelines as for the bilingual
interpreter (see p. 40).
If the person prefers lipreading, be sure to face him or her squarely and have good lighting on
93
your face. Examiners with a beard, mustache, or foreign accents are less effective. Do not exaggerate
your lip movements because this distorts your words. Similarly, shouting distorts the reception of a
hearing aid. Speak slowly and supplement your voice with appropriate hand gestures or
pantomime. Nonverbal cues are important adjuncts because the lip reader understands at best only
50% of your speech when relying solely on vision. Be sure that the person understands your
questions. Many hearing-impaired people nod “yes” just to be friendly and cooperative but really
do not understand.
Written communication is efficient in sections such as past health history or review of systems
when forms can easily be used. For the present history of illness, writing is very time-consuming
and laborious. The syntax of the person’s written words will read like English if the hearing
impairment occurred after speech patterns developed. If the deafness occurred before speech
patterns developed, the grammar and written syntax may follow that of sign language, which is
different from that of English.
Acutely Ill People
Emergent situations require combining the interview with the physical examination. In this case
focus the interview on pertinent information only, including history of present illness, medications,
allergies, last meal, and basic health state. Subjective information is a crucial component of
providing care; therefore, it is important that you try to interview as much as possible while
performing lifesaving actions. Abbreviate your questioning. Identify the main area of distress and
inquire about that. Family or friends often can provide important data.
A hospitalized person with a critical or severe illness is usually too weak, too short of breath, or
in too much pain to talk. Focus on making him or her comfortable first and then ask priority
questions about the history. Explore the first concern the person mentions. You will find that you
ask closed, direct questions earlier in the interview to decrease response burden. Finally make sure
that you are clear in your statements. When a person is very sick, even the simplest sentence can be
misconstrued. The person will react according to preconceived ideas about what a serious illness
means; thus anything you say should be direct and precise.
People Under the Influence of Street Drugs or Alcohol
It is common for people under the influence of alcohol or other mood-altering drugs to be admitted
to a hospital; all of these drugs affect the central nervous system (CNS), increasing risk for
overdose, accidents, and injuries. Also, chronic alcohol or drug use creates complex medical
problems that require more care.
Many substance abusers are poly-drug abusers. The client’s behavior depends on which drugs
were consumed. Alcohol, benzodiazepines, and the opioids (heroin, methadone, morphine,
oxycodone) are CNS depressants that slow brain activity and impair judgment, memory,
intellectual performance, and motor coordination. Stimulants of the central nervous system
(cocaine, amphetamine) can cause an intense high, agitation, and paranoid behavior. Hallucinogens
(LSD, ketamine, PCP) cause bizarre, inappropriate, sometimes violent behavior accompanied by
superhuman strength and insensitivity to pain.
When interviewing a person currently under the influence of alcohol or illicit drugs, ask simple
and direct questions. Take care to make your manner and questions nonthreatening. Avoid
confrontation while the person is under the influence, and avoid displaying any scolding or disgust
because this may make the person belligerent.
The top priority is to find out the time of the person’s last drink or drug, how much he or she
took, and the name of each drug that was taken. This information will help assess any withdrawal
patterns. (A full discussion of substance use assessment is presented in Chapter 6.) For your own
protection, be aware of hospital security or other personnel who could be called on for assistance.
Avoid turning your back, and make sure that you are aware of your surroundings.
Once a hospitalized substance abuser has been detoxified and is sober, he or she should be
assessed for the extent of the problem and its meaning for the person and family. Initially you will
encounter denial and increased defensiveness; special interview techniques are needed (see Chapter
6).
Personal Questions
Occasionally people will ask you questions about your personal life or opinions, such as “Are you
94
married?” “Do you have children?” or “Do you smoke?” You do not need to answer every question,
but you may supply information that you think is appropriate. Beware that there may be an ulterior
motive to the questions, such as anxiety or loneliness. Try directing your response back to the
person’s frame of reference. You might say something like, “No, I don’t have children; I wonder if your
question is related to how I can help you care for Jamie?”
Sexually Aggressive People
On some occasions personal questions extend to flirtatious compliments, seductive innuendo, or
sexual advances. Some people see illness as a threat to their self-esteem and sexual adequacy; this
feeling creates anxiety that makes them act out in sexually aggressive ways.
Your response must make it clear that you are a health professional who can best care for the
person by maintaining a professional relationship. It is important to communicate that you cannot
tolerate sexual advances, but you should also communicate that you accept the person and
understand his or her need to be self-assertive. This may be difficult, considering that the person’s
words or gestures may have left you shocked, embarrassed, or angry. Your feelings are normal. You
need to set appropriate verbal boundaries by saying, “I am uncomfortable when you talk to me that way;
please don’t.” A further response that would open communication is, “I wonder if the way you’re
feeling now relates to your illness or to being in the hospital?” If the behavior continues, you may need to
remove yourself from the situation.
Crying
A beginning examiner may feel uncomfortable when the client starts to cry, but crying is a big relief
to a person. Health problems come with powerful emotions, and it takes a good deal of energy to
keep worries about illness, death, or loss bottled up. When you say something that “makes the
person cry,” do not think you have hurt the person. You have just broached a topic that is
important. Do not go on to a new topic. It is important that you allow the person to cry and express
his or her feelings fully before you move on. Have tissues available, and wait until the crying
subsides to talk. Reassure the crying client that he or she does not need to be embarrassed and that
you are there to listen.
Sometimes your client may look as if he or she is on the verge of tears but is trying hard to
suppress them. Again, instead of moving on to something new, acknowledge the expression by
saying, “You look sad.” Don’t worry that you will open an uncontrollable floodgate. The person
may cry but will be relieved, and you will have gained insight to a serious concern. Use of
appropriate therapeutic touch can help show empathy while a person is crying.
C l i n i c a l I l l u s t r a t i o n
M.P., a 49-year-old male, is at the clinic today for a physical examination. He hasn’t been seen
in over 5 years and readily admits a dislike of doctors’ offices.
M.P.: I haven’t been seen in quite a while, but I thought I should come in soon.
Response: What made you decide to come see the doctor?
M.P.: (appears uncomfortable) My father died of a heart attack when he was 47 years old, so I
figure I’m living on borrowed time (lip folds in; tears in eyes).
Response: You look sad. (places hand on forearm)
M.P.: (crying now) It’s just that I have kids and a wife, and I worry about what’s going to
happen if I die. When my father died, my mother struggled so much to raise us. I don’t want
to leave my wife with that burden.
Response: I understand how worried you are, and I’m glad you came in for a checkup today.
We’ll take this one step at a time and work together to minimize your risk of having a heart
attack.
Anger
Occasionally you will try to interview a person who is already angry. Don’t take the anger
personally; it typically doesn’t relate to you. The person is showing aggression as a response to his
95
or her own feelings of anxiety or helplessness. Do ask about the anger and hear the person out. Deal
with the angry feelings before you ask anything else. An angry person cannot be an effective
participant in a health interview.
Threats of Violence
Over 70% of nurses report physical or verbal abuse in the workplace,12,16 and this number is likely
low due to underreporting of incidents of violence. Patients are the primary source of abuse against
health care professionals. Make sure you know your employer’s policy on violent behavior, and be
aware of resources, such as security personnel. Identifying red-flag behaviors of a potentially
disruptive person is important. These behaviors include fist clenching, pacing, a vacant stare,
confusion, statements out of touch with reality or that do not make sense, a history of recent drug
use, or a recent history of intense bereavement (loss of partner, loss of job).
If you sense any suspicious or threatening behavior, act immediately to defuse the situation, or
obtain additional support from others. Make sure that you leave the door to the examination room
open, and never turn your back to a potentially aggressive person. You also want to make sure to
position yourself between the person and door so that you can easily leave the room. Do not raise
your own voice or try to argue with the threatening person. Act calm and talk to the person in a soft
voice. Act interested in what the person is saying, and behave in an unhurried way. Your most
important goal is safety; avoid taking any risks.
Anxiety
Finally take it for granted that nearly all sick people have some anxiety. This is a normal response to
being sick. It makes some people aggressive and others dependent. Appearing unhurried and
taking the time to listen to all of the client’s concerns can help defuse some anxiety. Avoiding the
traps to interviews and using therapeutic responses are other ways to help defuse anxiety.
96
Culture and Genetics
Cultural Considerations on Gender
Violating cultural norms related to appropriate male-female relationships may jeopardize a
professional relationship. Among some Arab Americans an adult male is never alone with a female
(except his wife) and is generally accompanied by at least one other male when interacting with
females. This behavior is culturally very significant; a lone male could be accused of sexual
impropriety. Ask the person about culturally relevant aspects of male-female relationships at the
beginning of the interview. When gender differences are important to the patient, try strategies
such as offering to have a third person present. If a family member or friend has accompanied the
patient, inquire whether the patient would like that person to be in the examination room during
the history and/or physical examination. It is not unusual for a female to refuse to be examined by a
male and vice versa. Modesty is another issue. It is imperative to ensure that the patient is carefully
draped at all times, curtains are closed, and, when possible, doors are closed. Do not enter a room
without knocking first and announcing yourself.
Cultural Considerations on Sexual Orientation
Lesbian, gay, bisexual, and transgender (LGBTQ) individuals are aware of heterosexist biases and
the communication of these biases during the interview and physical examination. Heterosexism
refers to the belief that heterosexuality is the only natural choice and assumes that everyone is or
should be heterosexual. Heterosexism is a form of homophobia and leads to discrimination. Most
admitting and health history forms are heterosexist. The form asks for marital status and does not
include an option for a long-term committed relationship or partner. Many same-sex couples are in
monogamous, committed relationships, but there is seldom a category that acknowledges their
relationship on the form. Although technically and legally the person may be single, this trivializes
the relationship with his or her significant other. If this type of form is in use, the interviewer may
not realize that the person is in a relationship and may make inappropriate comments based on
incorrect assumptions.
Simple, basic changes in your communication and nursing practice can help avoid
heterosexism.17
• Do not marginalize a homosexual relationship. Ask the same
questions of a homosexual couple that you would of a
heterosexual couple as long as the questions are applicable.
• Know your state laws. For example, some states allow both
same-sex parents to be listed on the birth certificate, whereas
others do not.
• Use appropriate health teaching materials, including those that
depict same-sex couples.
• Do not make assumptions about a person’s sex based on his or
her appearance.
• Avoid heterosexist assumptions. Make sure that you ask all
appropriate questions while avoiding assumptions that
heterosexism is the norm. For example, ask a sexually active
woman, “Have you ever used birth control?” instead of, “Which
type of birth control measures have you used?” The latter question
assumes that the woman has had the need for birth control, which
assumes that she has engaged in relations with a man.
97
• Make sure that registration and admitting forms allow for
identification of a same-sex partner by using terms such as
“partner” or “significant other” while avoiding terms such as
“marital status.”
• Ask new patients what their preferred pronoun is (e.g., her/hers,
him/his, they/their, etc.). Do not assume because someone is
biologically female that the preferred pronoun is her.
• Show a caring demeanor and ask open-ended questions.
• Avoid asking unnecessarily intrusive questions. For example, if
you are updating a history for a client presenting with an upper
respiratory infection, you have no need to inquire about sexual
reassignment surgery or the genitalia of your transgender client.
• Don’t assume that anyone knows the client’s sexual orientation
or status as a transgender individual. Always respect the person’s
privacy.
• Be nonjudgmental, and make sure that your workplace has
adopted policies to avoid discrimination.
Most important, be aware of your personal bias and baggage. Being familiar with considerations
for treatment of the LGBTQ community is the first step in providing culturally competent care.
Working With (and Without) an Interpreter
Over 62 million people in the United States report speaking a language other than English at home
and over 25 million of those report speaking English “less than very well.”19 One of the greatest
challenges in cross-cultural communication occurs when you and the client speak different
languages (Fig. 3.9). After identifying a language barrier, you may find yourself trying to
communicate effectively through an interpreter or trying to communicate effectively when there is
no interpreter. Either way, it is important that you consider not only the meaning of the spoken
language, but also nonverbal communication. See Chapter 2 for culturally competent care.
3.9
Clients with language barriers experience many negative health outcomes, especially if an
interpreter is not used. Non–English-speaking clients have longer hospital stays, receive fewer
preventive services, and are less satisfied. Clients who need but do not receive an interpreter are
98
more likely to suffer adverse drug reactions, have a poor understanding of the diagnosis, and are at
greater risk for complications.9,15 The use of trained interpreters has been linked to lower admission
rates and increased use of preventive services. Trained interpreters can improve overall health
outcomes, improve use of primary care, and increase client satisfaction. Their use may also result in
a cost savings and reduced rate of complications.8
Interviewing the non–English-speaking person requires a bilingual interpreter for full
communication. Even clients who seem to have a basic command of English as a second language
may need an interpreter when faced with the anxiety-provoking situation of entering a hospital,
describing a strange symptom, or discussing sensitive topics such as those related to reproductive
or urologic concerns.
It is tempting to ask an ad hoc interpreter (e.g., a relative or friend) to interpret because this
person is readily available. Although convenient, it is disadvantageous for a number of reasons to
ask an untrained interpreter to translate. The client’s confidentiality is violated by asking for an ad
hoc interpreter because the client may not want his or her information shared. Furthermore, the
friend or relative, although fluent in ordinary language usage, is unlikely to be familiar with
medical terminology, hospital or clinic procedures, and medical ethics. Having a relative interpret
adds stress to an already stressful situation and may disrupt family relationships. In some cultures
full disclosure of a diagnosis such as cancer is taboo, so an ad hoc interpreter may edit the diagnosis
or not fully disclose information.
Whenever possible, work with a bilingual team member or a trained medical interpreter. This
person knows interpreting techniques, has a health care background, and understands clients’
rights. A trained interpreter is also knowledgeable about cultural beliefs and health practices. They
can help you bridge the cultural gap and advise you concerning the cultural appropriateness of
your recommendations.
Many clients with limited English proficiency do not have access to interpreters. It is your
responsibility to ensure that the provisions of Title VI as discussed in Chapter 2 are met. Few
clinicians receive necessary preparation to practice with interpreters. As a first preference, language
services should include the availability of a bilingual staff or on-site medical interpreters who can
communicate directly with clients in their preferred language and dialect and have received
adequate training.5 When a trained interpreter is unavailable, telephone translation services such as
AT&T LanguageLine Solutions (www.languageline.com) can be used 24 hours a day.
Although interpreters are trained to remain neutral, they can influence both the content of
information exchanged and the nature of the interaction. Many trained medical interpreters are
members of the linguistic community they serve. Although this is largely beneficial, it has
limitations. For example, interpreters may know clients and details of their circumstances before the
interview begins. Although acceptance of a code of ethics governing confidentiality and conflicts of
interest is part of the training that interpreters receive, discord may arise if an interpreter relates
information that the client has not volunteered to the examiner.
Note that being bilingual does not always mean that the interpreter is culturally aware. For
example, the Latino culture is so diverse that a Spanish-speaking interpreter from one country,
class, race, and gender does not necessarily understand the cultural background of a Spanish-
speaking person from another country and different circumstances. Even trained interpreters, who
are often from urban areas and represent a higher socioeconomic class than the clients whom they
interpret, may be unaware of or embarrassed by rural attitudes and practices. Summarized in Table
3.5 are suggestions for the selection and use of an interpreter.
TABLE 3.5
Use of an Interpreter
Choosing an Interpreter
• Before locating an interpreter, identify the language the person is most comfortable speaking.
• Use a trained interpreter, preferably one who knows medical terminology.
• Avoid interpreters from a rival tribe, state, region, or nation (e.g., a Palestinian who knows Hebrew may not be the best interpreter for a
Jewish person).
• Be aware of gender differences between interpreter and client. In general the same gender is preferred.
Strategies for Effective Use of an Interpreter
• Plan what you want to say ahead of time. Meet privately with the interpreter before the interview to share your expectations and review
the purpose of the appointment.
• Ask the interpreter to provide a verbatim account of the conversation.
• Be patient. When using an interpreter, interviews often take 2 to 3 times longer.
99
http://www.languageline.com
• Longer-than-expected explanatory exchanges are often required to convey the meaning of words such as stress, depression, allergy,
preventive medicine, and physical therapy because there may not be comparable terms in the language the client understands.
• When discussing diagnostic tests, be sure to clarify the nature of the test to the interpreter. Indicate the purpose of the test, exactly what
will happen to the client, approximately how long the test will take, whether the procedure is invasive or noninvasive, and which part(s)
of the body will be tested.
• Avoid ambiguous statements and questions. Refrain from using conditional or indefinite phrasing such as “if,” “would,” and “could,”
especially for target languages such as Khmer (Cambodia) that lack nuances of conditionality or distinctions of time other than simple past
and present. Conditional statements may be mistaken for actual agreement or approval of a course of action.
• Avoid abstract expressions, idioms, similes, metaphors, and medical jargon.
• Speak to the client, not the interpreter. Use positive nonverbal communication skills throughout the exchange to facilitate rapport.
• Use short, simple sentences, pausing frequently to allow for interpretation.
• Know what services are available at your workplace.
Recommendations for Institutions
• Maintain a current computerized list of interpreters who may be contacted as needed.
• Network with area hospitals, colleges, universities, and other organizations that may serve as resources.
• Use over-the-telephone interpretation services provided by telephone companies. For example, since 1989 AT&T has operated the
LanguageLine Solutions, which provides interpretation in more than 140 languages. Services are available around the clock every day of
the year. Call (800) 628-8486 or visit www.languageline.com for further information on services and charges.
Although you will be in charge of the focus and flow of the interview, view yourself and the
interpreter as a team. Ask the interpreter to meet the client beforehand to establish rapport and to
determine the client’s age, occupation, educational level, and attitude toward health care. This
enables the interpreter to communicate on the client’s level. Place the interpreter next to the client,
but speak directly to the client. Although it can be difficult, focus on the client and address your
questions to him or her. For example, do not say to the interpreter, “Ask him if he has pain,” but
rather ask the client directly, “Do you have pain?”
Although a trained interpreter is your best choice, you may find yourself in a situation in which
the client insists on using a friend or family member or when you may have no other choice. In
either of these situations, make sure to document who was used as the interpreter and whether it
was the client’s choice. Unless there is an emergency, never use a minor as an interpreter. Make sure
that you assess the ad hoc interpreter’s ability to translate complex medical terminology. You may
have to change your phrasing and terminology with an untrained interpreter. Keep your
questioning in mind as well. If you are going to ask about sensitive topics such as domestic
violence, sexually transmitted infections, illicit drugs, end-of-life care, or other controversial topics,
the client may not be as forthcoming with a friend or family member as the interpreter.
You will need to allow more time for the interview. Having a third person repeat everything will
take considerably longer than your interview with English-speaking clients. If you have limited
time, focus on priority data.
There are two styles of interpreting: line-by-line and summarizing. Translating line-by-line takes
more time, but it ensures accuracy. Use this style for most of the interview. Speak only 1 or 2
sentences at a time then allow for interpretation. Use simple language, not medical jargon that the
interpreter must simplify before it can be translated. Summary translation progresses faster and is
useful for teaching relatively simple health techniques with which the interpreter is already
familiar. Be alert for nonverbal cues as the client talks. These cues can give valuable data. A good
interpreter also notes nonverbal messages and passes them on to you.
Although use of an interpreter is the ideal, you may find yourself in a situation with a non–
English-speaking client when no interpreter is available. Table 3.6 summarizes some suggestions for
overcoming language barriers when no interpreter is present.
TABLE 3.6
What to Do When No Language Interpreter Is Available
1. Be polite and formal.
2. Pronounce name correctly. Use proper titles of respect such as “Mr.,” “Mrs.,” “Ms.,” “Dr.” Greet the person using the last or complete
name.
Gesture to yourself and say your name.
Offer a handshake or nod. Smile.
3. Proceed in an unhurried manner. Pay attention to any effort by the client or family to communicate.
4. Speak in a low, moderate voice. Avoid talking loudly. Remember that there is a tendency to raise the volume and pitch of your voice
when the listener appears not to understand. The listener may perceive that you are shouting and/or angry. Speaking loudly will not help
the person understand.
5. Use any words that you might know in the person’s language. This indicates that you are aware of and respect his or her culture.
6. Use simple words such as “pain” instead of “discomfort.” Avoid medical jargon, idioms, and slang. Avoid using contractions (e.g., don’t,
can’t, won’t). Use nouns repeatedly instead of pronouns.
Do not say: “He has been taking his medicine, hasn’t he?”
Do say: “Does Juan take medicine?”
7. Pantomime words and simple actions while you verbalize them.
100
http://www.languageline.com
8. Give instructions in the proper sequence.
Do not say: “Before you sterilize the bottle, rinse it.”
Do say: “First wash the bottle. Second, sterilize the bottle.”
9. Discuss one topic at a time. Avoid using conjunctions.
Do not say: “Are you cold and in pain?”
Do say: “Are you cold (while pantomiming)? Are you in pain?”
10. Validate whether person understands by having him or her repeat instructions, demonstrate the procedure, or act out the meaning.
11. Write out several short sentences in English and determine the person’s ability to read them.
12. Try a third language. Many Indochinese speak French. Europeans often know two or more languages. Try Latin words or phrases.
13. Ask who among the person’s family and friends could serve as an interpreter.
14. Obtain phrase books from a library or bookstore, make or purchase flash cards, contact hospitals for a list of interpreters, and use both
formal and informal networks to locate a suitable interpreter.
Health Literacy: Ensuring We Are Understood
You might have perfected the communication techniques described and feel fully prepared to
interview the most challenging client, but are you sure that he or she understands everything you
say? Literacy is the ability to read and write; however, health literacy refers to the ability to
understand instructions, navigate the health care system, and communicate concerns with the
health care provider.7,11 A person can have adequate literacy yet lack adequate health literacy. In
2006 the U.S. Department of Education released the National Assessment of Adult Literacy, which
estimated that only 12% of people have proficient health literacy. Said another way, nearly 9 out of
10 people that you encounter do not have adequate health literacy to navigate the health care
system and understand health instructions.10
Health literacy encompasses a variety of factors beyond basic reading, including the ability to use
quantitative (numeric) information and to understand and remember verbal instructions. People
with low health literacy struggle to navigate the health care system and may be noncompliant
because of a misunderstanding. Low health literacy has been associated with low medication
compliance, more emergency department visits, increased readmission rates, inability to recall
information after a clinic visit, and an inability to effectively manage chronic illness. Low health
literacy leads to increased cost of care and poor outcomes for this population.
Tools for Determining Literacy
As a clinician you are on the front line in the battle for adequate health literacy for your clients. A
wide variety of tools to measure health literacy exist—some more challenging than others.
Although The Joint Commission requires that patient communication needs be identified, there is
no requirement for actual assessment of health literacy. Multiple tools exist for the assessment of
health literacy, each with varying strengths and weaknesses.
All health literacy tools can be used in the clinical setting, but incorporating them is challenging.
The Test of Functional Health Literacy requires over 20 minutes to administer and measures
numeracy and reading comprehension. The Rapid Estimate of Adult Literacy in Medicine takes
only a few minutes but requires the person to read 68 medical terms while being scored on correct
pronunciation. A Single-Item Literacy Screener has been suggested, but with only marginal
effectiveness. The Newest Vital Sign assesses numeracy and comprehension by asking the person to
answer questions based on an ice cream nutrition label. Some clinics simply ask standardized
questions such as, “Do you have any limitations in learning?” or “What is the last grade level
completed?” instead of requiring a specific assessment tool. No standard approach to measuring
health literacy is currently recommended, but it is important that you know the policy at your place
of work and take time to assess your client’s health literacy to assure understanding of important
information.
What Can You Do?
Oral Teaching
As a clinician there are steps you can take to ensure that your clients understand the information
you are providing. Although completing a health literacy screener gives you objective data and can
help you determine the appropriate level of information, most clients (regardless of literacy level)
want to be provided with simple, easy-to-understand instructions; therefore the practice of giving
all clients simple instructions at a lower reading level is acceptable. When discussing medical
information with clients, keep it simple, use short sentences and words containing no more than
two syllables (when possible), limit the number of messages you are giving the client, be sure to tell
101
the person what they will gain by following your instructions, present only needed information,
focus on the client, use the active voice, and avoid jargon. Although you may think using complex
terms and sentences makes you sound more professional or smarter, it can confuse the client. You
are better off speaking to them as you would to a friend, using a conversational structure that
includes time for them to ask questions. A few examples follow:
Say: Feel for lumps about the size of a pea.
Don’t say: Feel for lumps about 5 to 6 millimeters.
Say: Birth control
Don’t say: Contraception
Say: Cook chicken until it is no longer pink.
Don’t say: Cook chicken to an internal temperature of 165° F.
Written Materials
When preparing or using written materials, make sure to assess the appropriateness of the
materials. Most client education materials are created at a reading level that is not suitable for the
majority of clients. Written materials should be at the 5th-grade reading level or below. Reading
level can be determined with a variety of formulas that use number of syllables per word and
complexity of sentences to determine reading level. Materials should be at least 12-point font. Also
avoid all capital letters, use headings and subheadings, use bullet points, and limit medical jargon.3
Pictures are often used in written materials, but you must be careful to select appropriate graphics.
Teach-Back
Although ensuring appropriate verbal and written communication is important, one of the easiest
things you can do when teaching a client is to use the teach-back approach. Teach-back is simple
and free. It allows you to assess whether the person understands and to immediately correct
misconceptions. Many health care professionals ask, “Do you understand?” or “Do you have any
questions?” throughout the teaching sessions. Just because your client has no questions and
indicates understanding with a nod doesn’t mean that he or she actually understands the
information. Using teach-back encourages the client to repeat in his or her own words what you
have just said. This verbal discussion allows you to assess the understanding and may open the
door for the client to ask questions.
Communicating With Other Professionals
Throughout your career, you will work with professionals from a variety of health care disciplines.
It is imperative that you learn to communicate effectively with other professionals. The use of
therapeutic communication will not only help in your interactions with patients, but will also guide
your interactions with other professionals. Interprofessional communication is communication
that occurs between 2 or more individuals from different health professions (e.g., nursing, therapy
services, physicians). Effective interprofessional communication requires an environment of mutual
respect and collaboration among professionals of various disciplines.
Ineffective interprofessional communication has been linked to delays in treatment, medication
errors, misdiagnosis, patient injury, and death.6 Each health professional brings a different but
necessary skill set to the treatment of a patient. Recognition and respect for each person’s skills is
necessary for effective teamwork, collaboration, and communication.1
Open lines of communication are necessary when caring for patients in any health care setting.
Rarely will you work alone. Instead you will likely collaborate with other health care professionals
as you care for patients throughout your career. When communicating with other health care
professionals, make sure you provide timely updates, communicate in a clear, succinct manner, are
polite and respectful, and use communication tools (e.g., SBAR).2 Ineffective communication has
negative consequences to patient care, but also impacts the job satisfaction of health care
professionals.20 It is important that health professionals work together to provide the best possible
patient experience and create the best work environment possible.
Standardized Communication
102
Standard communication formats are becoming more popular in the health care setting. A
standardized communication report is similar to a checklist. Checklists are used to ensure safety
and to prevent important steps from being missed due to fatigue or other factors. One of the most
commonly used standardized communication tools in health care is the Situation, Background,
Assessment, Recommendation (SBAR). SBAR was first developed in the U.S. military to
standardize communication and prevent misunderstandings. In the hospital, communication errors
contribute to most sentinel events. Thus SBAR is used at health care facilities all over the country to
improve communication and reduce errors.
SBAR is a standardized framework to transmit important in-the-moment information. Using
SBAR will keep your message concise and focused on the immediate problem yet give your
colleague enough information to grasp the current situation and make a decision. Using a
structured format allows for a common language among health professionals from a variety of
disciplines. Nurses often communicate information in lengthy narratives, whereas physicians tend
to use succinct bullet points. Using a standard tool which assures pertinent information is conveyed
allows multiple disciplines to communicate more effectively (Table 3.7).
TABLE 3.7
SBAR Communication
S Situation State your name, your unit, patient’s name, room
number, patient’s problem, when it happened or
when it started, and the severity.
This is Sue in the ortho unit. I am calling about pain control for
Ms. Carpenter in room 15.
B Background Do not recite the patient’s full history since
admission. Do state the data pertinent to this
moment’s problem: admitting diagnosis, when
admitted, and appropriate immediate assessment
data (e.g., vital signs, pulse oximetry, change in
mental status, allergies, current medications, IV
fluids, laboratory results).
She has no significant medical history. Yesterday she had a right
knee replacement. Her VS are: HR 126, respirations 20, BP 140/96.
Her labs are within expected parameters. She has an order for
Tylenol 650 mg every 4 hours for mild/moderate pain and
morphine 1-4 mg every 2 hours for breakthrough pain. She has
no medication allergies and has been consistently taking her pain
medicine.
A Assessment State your assessment findings. This can include
what you found and what you think may be
wrong.
Ms. Carpenter is rating her pain at 10/10 with no relief from
medication. She is reluctant to ambulate, refusing physical
therapy. Pedal pulses are 2+, equal bilaterally, surgical site is
within normal limits without signs of infection.
R Recommendation
or request
State what you want/need to continue caring for
the patient.
I believe Ms. Carpenter would benefit from a different pain
medication regimen such as scheduled tramadol with oral
hydrocodone for more severe pain. What would you like to order
for Ms. Carpenter?
103
References
1. Arnold E, Boggs K. Interpersonal relationships: Professional communication skills for
nurses. 7th ed. Elsevier: St. Louis; 2016.
2. Canadian Medical Practice Advisory Council. https://www.cmpa-
acpm.ca/en/advice-publications/browse-articles/2011/strengthening-inter-
professional-communication; 2011.
3. Centers for Disease Control and Prevention. Simply put: a guide for creating easy-to-
understand materials. http://www.cdc.gov/healthliteracy/learn/index.html; 2009.
4. Chalmers D. Communicating with children from birth to four years. Routledge: New
York; 2017.
5. Flores G, Abreu M, Barone CP, et al. Errors of medical interpretation and their
potential clinical consequences: A comparison of professional versus ad hoc
versus no interpreters. Ann Emerg Med. 2012;60(5):545–553.
6. Foronda C, MacWilliams B, McArthur E. Interprofessional communication in
healthcare: An integrative review. Nurse Educ Pract. 2016;19:36–40.
7. Institute of Medicine. Health literacy: A prescription to end confusion. [In L. Nielsen-
Bohlman, A. Panzer, & D. Kindig (Eds.); Washington, DC: National Academies
Press] 2004.
8. Interpreting Stakeholder Group. How to work effectively with interpreters.
www.umtia.org; 2009.
9. Juckett G, Unger K. Appropriate use of medical interpreters. Am Fam Physician.
2014;90(7):476–480.
10. Kutner M, Greenberg E, Jin Y, et al. The health literacy of America’s adults. National
Center for Education Statistics, U.S. Department of Education: Washington, DC;
2006 http://nces.ed.gov/pubs2006/2006483 [Sep. NCES 2006–483].
11. McCleary-Jones V. A systematic review of the literature on health literacy in
nursing education. Nurse Educ. 2016;41(2):93–97.
12. Occupational Safety and Health Administration. Workplace violence in healthcare.
https://www.osha.gov/Publications/OSHA3826 ; 2015.
13. Rathert C, Mittler JN, Banerjee S, et al. Patient-centered communication in the era
of electronic health records: What does the evidence say? Patient Educ Couns.
2017;100:50–64.
14. Richardson KJ. DEAF CULTURE: Competencies and best practices. Nurse
Practitioner. 2014;39(5):20–29.
15. Rorie S. Using medical interpreters to provide culturally competent care. AORN J.
2015;101(2):P7–P9.
16. Speroni KG, Fitch T, Dawson E, et al. Incidence and cost of nurse workplace
violence perpetrated by hospital patients or visitors. J Emerg Nurs. 2014;40(3):218–
228.
17. Sullivan K, Guzman A, Lancellotti D. Nursing communication and the gender
identity spectrum. Am Nurse Today. 2017;12(5):6–11.
18. Touhy TA, Jett KF. Ebersole & Hess’ toward healthy aging. 9th ed. Elsevier: St. Louis;
2016.
19. U.S. Census Bureau. American FactFinder. [n.d.] factfinder.census.gov.
20. Vermeir P, Vandijck D, Degroote S, et al. Communication in healthcare: A
narrative review of the literature and practice recommendations. Int J Clin Pract.
2015;69(11):1257–1267.
aThe term “client” is being used throughout this chapter to encompass the variety of settings in
which you may encounter individuals where they are not considered patients, including the home
setting.
104
https://www.cmpa-acpm.ca/en/advice-publications/browse-articles/2011/strengthening-inter-professional-communication
http://www.cdc.gov/healthliteracy/learn/index.html
http://www.umtia.org
http://nces.ed.gov/pubs2006/2006483
https://www.osha.gov/Publications/OSHA3826
http://factfinder.census.gov
105
C H A P T E R 4
106
The Complete Health History
The purpose of the health history is to collect subjective data—what the person says about himself
or herself. This is different from objective data—what you observe through measurement,
inspection, palpation, percussion, and auscultation. The history is combined with the objective data
from the physical examination and laboratory studies to form the database. The database is used to
make a judgment or a diagnosis about the health status of the individual (Fig. 4.1).
4.1
The health history provides a complete picture of the person’s past and present health. It
describes the individual as a whole and how the person interacts with the environment. It records
health strengths and coping skills. The history should recognize and affirm what the person is doing
right: what he or she is doing to help stay well. For the well person, the history is used to assess his
or her lifestyle, including such factors as exercise, healthy diet, substance use, risk reduction, and
health promotion behaviors.
For the ill person, the health history includes a detailed and chronologic record of the health
problem. For everyone the health history is a screening tool for abnormal symptoms, health
problems, and concerns; and it records ways of responding to the health problems.
In many settings the patient fills out a printed or electronic history form. This allows the person
ample time to recall and consider such items as dates of health landmarks and relevant family
history. You then review and validate the written data and collect more data on lifestyle
management and current health problems.
Although history forms vary, most contain information in the sequence of categories listed to the
right. This health history format presents a generic database for all practitioners. Those in primary
care settings may use all of it, whereas those in a hospital may focus primarily on the history of
present illness and the functional, or patterns of living, data.
Health History Sequence
1. Biographic data
2. Reason for seeking care
3. Present health or history of present illness
4. Past history
5. Medication reconciliation
6. Family history
107
7. Review of systems
8. Functional assessment or activities of daily living (ADLs)
The Health History—the Adult
Record the date and time of day of the interview.
Biographic Data
Biographic data include name, address, and phone number; age and birth date; birthplace; gender;
relationship status; race; ethnic origin; and occupation. If illness has caused a change in occupation,
include both the usual occupation and the present occupation. Record the person’s primary
language. Try to find a language-concordant provider to collect the history or a medical interpreter
fluent in the patient’s language.
Source of History
1. Record who furnishes the information—usually the person himself or herself, although the
source may be an interpreter or caseworker. Less reliable is a relative or friend.
2. Judge how reliable the informant seems and how willing he or she is to communicate. A
reliable person always gives the same answers, even when questions are rephrased or
repeated later in the interview.
3. Note whether the person appears well or ill; a sick patient may communicate poorly.
See sample recordings at right.
Sample Statements:
Patient herself, who seems reliable
Patient’s son, John Ramirez, who seems reliable
Mrs. R. Fuentes, interpreter for Theresa Castillo, who does not speak English
Reason for Seeking Carea
This is a brief, spontaneous statement in the person’s own words that describes the reason for the
visit. Think of it as the “title” for the story to follow. It states one (possibly two) symptoms or signs
and their duration. A symptom is a subjective sensation that the person feels from the disorder. A
sign is an objective abnormality that you as the examiner could detect on physical examination or
through diagnostic testing. Try to record whatever the person says is the reason for seeking care,
enclose it in quotation marks to indicate the person’s exact words, and record a time frame. See
examples at right.
Sample Statements:
“Chest pain for 2 hours”
“Sinus pressure for 3 days that keeps getting worse”
“Tugging at her ears and was fussy all night”
“Need annual physical for work”
“Want to start exercise program and need checkup”
The reason for seeking care is not a diagnostic statement. Avoid translating it into the terms of a
medical diagnosis. For example, Mr. J.S. enters with shortness of breath, and you ponder writing
“emphysema.” Even if he is known to have emphysema from previous visits, it is not the chronic
emphysema that prompted this visit but, rather, the “increasing shortness of breath” for 4 hours.
108
Some people try to self-diagnose based on similar signs and symptoms in their relatives or
friends or on conditions they know they have. Rather than record a woman’s statement that she has
“strep throat,” ask her what symptoms she has that make her think this is present, and record those
symptoms.
Occasionally a person may have many reasons for seeking care. After the first reason, ask, “Is
there anything else we should take care of today?” The most important reason to the person may
not necessarily be the one stated first. Try to focus on which is the most pressing concern by asking
the person which one prompted him or her to seek help now.
Present Health or History of Present Illness
For the well person, this is a short statement about the general state of health: “I feel healthy right
now.” “I am healthy and active.”
For the ill person, this section is a chronologic record of the reason for seeking care, from the time
the symptom first started until now. Isolate each reason for care identified by the person and say,
for example, “Please tell me all about your headache, from the time it started until the time you
came to the hospital” (Fig. 4.2). If the concern started months or years ago, record what occurred
during that time and find out why the person is seeking care now.
4.2
As the person talks, do not jump to conclusions and bias the story by adding your opinion.
Collect all the data first. Although you want the person to respond in a narrative format without
interruption from you, your final summary of any symptom the person has should include these
eight critical characteristics:
1. Location. Be specific; ask the person to point to the location. If the problem is pain, note the
precise site. “Head pain” is vague, whereas descriptions such as “pain behind the eyes,”
“jaw pain,” and “occipital pain” are more precise and diagnostically significant. Is the pain
localized to one site or radiating? Is the pain superficial or deep?
2. Character or Quality. This calls for specific descriptive terms such as burning, sharp, dull,
aching, gnawing, throbbing, shooting, viselike when describing pain. You also need to ask
about the character of other symptoms. Use similes: Blood in the stool looks like sticky tarm
whereas blood in vomitus looks like coffee grounds.
3. Quantity or Severity. Attempt to quantify the sign or symptom, such as “profuse menstrual
flow soaking five pads per hour.” Quantify the symptom of pain using the scale shown on
the right. With pain, avoid adjectives, and ask how it affects daily activities. Then record if
the person says, “I was so sick I was doubled over and couldn’t move” or “I was able to go
to work, but then I came home and went to bed.”
4. Timing (Onset, Duration, Frequency). When did the symptom first appear? Give the
specific date and time or state specifically how long ago the symptom started prior to
arrival (PTA). “The pain started yesterday” will not mean much when you return to read
the record in the future. The report must include answers to questions such as the
109
following: “How long did the symptom last (duration)?” “Was it steady (constant) or did it
come and go (intermittent)?” “Did it resolve completely and reappear days or weeks later
(cycle of remission and exacerbation)?”
5. Setting. Where was the person or what was the person doing when the symptom started?
What brings it on? For example, “Did you notice the chest pain after shoveling snow, or did
the pain start by itself?”
6. Aggravating or Relieving Factors. What makes the pain worse? Is it aggravated by
weather, activity, food, medication, standing, fatigue, time of day, or season? What relieves
it (e.g., rest, medication, or ice pack)? What is the effect of any treatment? Ask, “What have
you tried?” or “What seems to help?”
7. Associated Factors. Is this primary symptom associated with any others (e.g., urinary
frequency and burning associated with fever and chills)? Review the body system related to
this symptom now rather than waiting for the Review of Systems section later. Many
clinicians review the person’s medication regimen now (including alcohol and tobacco use)
because the presenting symptom may be a side effect or toxic effect of a chemical.
8. Patient’s Perception. Find out the meaning of the symptom by asking how it affects daily
activities (Fig. 4.3). “How has this affected you? Is there anything you can’t do now that you
could do before?” Also ask directly, “What do you think it means?” This is crucial because
it alerts you to potential anxiety if the person thinks the symptom may be ominous.
4.3
Pain Scale
Quantify the symptom of pain by asking: “On a 10-point scale, with 10 being the most pain you
can possibly imagine and 0 being no pain, tell me how your pain feels right now.” (See Chapter 11
for a full description.)
You may find it helpful to organize this question sequence into the mnemonic PQRSTU to help
remember all the points.
P: Provocative or Palliative. What brings it on? What were you doing when you first noticed
it? What makes it better? Worse?
Q: Quality or Quantity. How does it look, feel, sound? How intense/severe is it?
R: Region or Radiation. Where is it? Does it spread anywhere?
S: Severity Scale. How bad is it (on a scale of 0 to 10)? Is it getting better, worse, staying the
same?
T: Timing. Onset—Exactly when did it first occur? Duration—How long did it last? Frequency
—How often does it occur?
U: Understand Patient’s Perception of the Problem. What do you think it means?
110
Past Health
Past health events are important because they may have residual effects on the current health state.
The previous experience with illness may also give clues about how the person responds to illness
and the significance of illness for him or her.
Childhood Illnesses.
Measles, mumps, rubella, chickenpox, pertussis, and strep throat. Avoid recording “usual
childhood illnesses,” because an illness common in the person’s childhood (e.g., mumps) may be
unusual today. Ask about serious illnesses that may have sequelae for the person in later years (e.g.,
rheumatic fever, scarlet fever, poliomyelitis).
Accidents or Injuries.
Auto accidents, fractures, penetrating wounds, head injuries (especially if associated with
unconsciousness), and burns.
Serious or Chronic Illnesses.
Asthma, depression, diabetes, hypertension, heart disease, human immunodeficiency virus (HIV)
infection, hepatitis, sickle cell anemia, cancer, and seizure disorder.
Hospitalizations.
Cause, name of hospital, how the condition was treated, how long the person was hospitalized, and
name of the physician.
Operations.
Type of surgery, date, name of the surgeon, name of the hospital, and how the person recovered.
Obstetric History.
Number of pregnancies (gravidity), number of deliveries in which the fetus reached full term
(term), number of preterm pregnancies (preterm), number of incomplete pregnancies (miscarriages
or abortions), and number of children living (living). For each complete pregnancy, note the course
of pregnancy; labor and delivery; sex, weight, and condition of each infant; and postpartum course.
Recorded as:
Grav 3
Term 2
Preterm 1
Ab 0
Living 3
Immunizations.
Routinely assess vaccination history and urge the recommended vaccines. Your strong
recommendation increases compliance. Use the current Centers for Disease Control and Prevention
(CDC) recommendations for adults, but be aware of primary contraindications and precautions, as
well as the person’s lifestyle, occupation, and travel. The recommendations for adults include the
following5: influenza (annually), tetanus-diphtheria-pertussis (Tdap) once if not given previously
then Td every 10 years, varicella (if no evidence of immunity), human papillomavirus (HPV), zoster
(after 60 years), measles-mumps-rubella ([MMR], if not immunized as a child or no evidence of
immunity), pneumococcal (after 65 years), meningococcal (based on exposure risk), and hepatitis A
and B. Serologic proof of immunity may be required even if childhood vaccines were given. Consult
current guidelines and counsel each patient appropriately. In addition to the recommendations
above, repeat Tdap should be given with each pregnancy during 27 to 36 weeks’ gestation.5
111
You can find a printable color-coded table of the adult immunization schedule at
https://www.cdc.gov/vaccines/schedules/hcp/imz/adult.html.
Advise gay and bisexual men to receive HPV, hepatitis A, and hepatitis B vaccinations. If they are
not in a long-term monogamous relationship, they should have annual testing for HIV, syphilis,
gonorrhea, and chlamydia.3
Last Examination Date.
Physical, dental, vision, hearing, electrocardiogram (ECG), chest x-ray, mammogram, Pap test, stool
occult blood, serum cholesterol.
Allergies.
Note both the allergen (medication, food, or contact agent such as fabric or environmental agent)
and the reaction (rash, itching, runny nose, watery eyes, difficulty breathing). For drug allergies, list
only those that are true allergic reactions, not unpleasant side effects.
Current Medications.
Medication reconciliation is a comparison of a list of current medications with a previous list,
which is done at every hospitalization and every clinic visit. The purpose is to reduce errors and
promote patient safety.11 For all currently prescribed medications, note the name (generic or trade),
dose, and schedule, and ask: “How often do you take it each day? What is it for? How long have
you been taking it? Do you have any side effects?” and if not taking it, “What is the reason you
stopped taking it?” This is an important opportunity for health teaching. Take a moment to teach
the patient about medications as applicable.
A person could take furosemide from one prescriber and Lasix from another, not knowing that it is
the same medication.
Ask about nonprescription and over-the-counter (OTC) drugs. The average U.S. home medicine
cabinet holds 24 OTC medications, and 40% of Americans take at least one OTC medicine every 2
days.9 Specifically ask about aspirin (because many people do not consider it a medication even
though they take it every day) and other medications: vitamins, birth control pills, antacids, cold
remedies, acetaminophen. Be aware that acetaminophen is a component in many OTC pain and
cold medications. It has close to 25 trade names, including Tylenol. Serious liver damage may ensue
if a person unknowingly doubles or triples the maximum daily acetaminophen intake. For any pain
reliever (e.g., acetaminophen, ibuprofen [Advil, Motrin]), ask how many milligrams the person
takes. This is an opportunity to provide teaching about maximum safe doses of medications such as
Tylenol. Always counsel patients to read medication labels and be mindful of maximum dosages.
Ask about herbal medications. Although not regulated by the Food and Drug Administration,
they are popular because consumer advertising of these products often promises weight loss,
improved memory, or relief from insomnia, depression, or other conditions. Many are considered
safe, but some interact with prescribed medications. For example, St. John’s wort is often taken for
depression, but because it enters the CYP 450 enzyme metabolism, it has many herb-drug
interactions.9
Inquire about substances (alcohol, tobacco, street drugs) here or later in Personal Habits (see p.
53).
Family History
In the age of genomics an accurate family history highlights diseases and conditions for which a
particular patient may be at increased risk. A person who learns that he or she may be vulnerable
for a certain condition may seek early screening and periodic surveillance. A person with significant
coronary heart disease history (e.g., a cardiac event in a first-degree male relative <55 years or
female relative <65 years) may be influenced to adopt a healthy lifestyle when possible to mitigate
that risk.
The most fruitful way to compile a complete family history is to send home a detailed
112
https://www.cdc.gov/vaccines/schedules/hcp/imz/adult.html
questionnaire before the health care/hospital encounter because the information takes time to
compile and often comes from multiple family members. Then you can use the health visit to
complete the pedigree. A pedigree or genogram is a graphic family tree that uses symbols to depict
the gender, relationship, and age of immediate blood relatives in at least three generations such as
parents, grandparents, and siblings (Fig. 4.4). Other relatives who are included in the genogram are
aunts, uncles, nieces, nephews, and cousins. The health of close family members, such as spouse or
partner and children, is equally important to highlight the patient's prolonged contact with any
communicable disease or environmental hazard such as tobacco smoke or to flag the effect of a
family member's illness on this person.
113
4.4 Genogram or family tree. (American Society of Human Genetics, 2004.)
Record the medical condition of each relative and other significant health data such as age and
cause of death, twinning, tobacco use, and heavy alcohol use. When reviewing the family history
data, ask specifically about coronary heart disease, high blood pressure, stroke, diabetes, obesity,
blood disorders, breast/ovarian cancer, colon cancer, sickle cell anemia, arthritis, allergies, alcohol
or drug addiction, mental illness, suicide, seizure disorder, kidney disease, and tuberculosis (TB).
114
Family History Tools in Electronic and Print Format
U.S. Surgeon General (My Family Health Portrait): www.hhs.gov/familyhistory/
Utah Health Family Tree: www.health.utah.gov/genomics
American Medical Association: https://www.ama-assn.org/sites/default/files/media-
browser/public/adult_history .
115
http://www.hhs.gov/familyhistory/
http://www.health.utah.gov/genomics
https://www.ama-assn.org/sites/default/files/media-browser/public/adult_history
Culture and Genetics
Add several questions to the complete health history when the person is a new immigrant:
• Biographic data—When did the person enter the United States
and from what country? If a refugee, under which conditions did
he or she come? Was there harassment or torture?
• The older adult may have come to this country after World
War II and may be a Holocaust survivor. Questions
regarding family and history may evoke painful memories
and must be asked carefully.
• Spiritual resources/religion—Assess whether certain procedures,
such as administering blood to a Jehovah's Witness or drawing
large amounts of blood from a Chinese patient, are prohibited.
• Past health—Which immunizations were given in the homeland
(e.g., was the person given bacillus Calmette-Guérin [BCG])? This
vaccine is used in many countries to prevent TB; it is not
administered in the United States. If the person has had BCG, he or
she will have a positive tuberculin skin test; further diagnostic
procedures including a sputum test and chest x-ray must be done
to rule out TB.
• Health perception—How does the person describe health and
illness, and what does he or she see as the problem that he or she is
now experiencing?
• Nutritional—Which foods and food combinations are taboo?
Many immigrants have significant health care needs (e.g., diabetes, accidents on the job, muscle
pain) but are in the country without documentation. They may be reluctant to seek care and
furnish biographic data for fear of deportation.
Review of Systems
The purposes of this section are (1) to evaluate the past and present health state of each body
system, (2) to double-check in case any significant data were omitted in the Present Illness section,
and (3) to evaluate health promotion practices. The order of the examination of body systems is
roughly head to toe. The items within each system are not inclusive, and only the most common
symptoms are listed. If the Present Illness section covered a body system, you do not need to repeat
all the data here. For example, if the reason for seeking care is earache, the Present Illness section
describes most of the symptoms listed for the auditory system. Just ask now what was not asked in
the Present Illness section.
Medical terms are listed here, but they need to be translated for the patient. Do not ask the patient
about polydipsia. Instead inquire about any unusual or severe thirst. (Note that symptoms and
health promotion activities are merely listed here. These terms are repeated and expanded in each
related physical examination chapter, along with suggested ways to pose questions and a rationale
for each question.)
When recording information, avoid writing “negative” after the system heading. You need to
record the presence or absence of all symptoms; otherwise the reader does not know about which
116
factors you asked.
A common mistake made by beginning practitioners is to record some physical finding or
objective data such as “skin warm and dry” in the review of systems. Remember that the history
should be limited to patient statements or subjective data—factors that the person says were or were
not present.
General Overall Health State.
Present weight (gain or loss, over what period of time, by diet or other factors), fatigue, weakness or
malaise, fever, chills, sweats or night sweats.
Skin, Hair, and Nails.
History of skin disease (eczema, psoriasis, hives), pigment or color change, change in mole,
excessive dryness or moisture, pruritus, excessive bruising, rash or lesion (Fig. 4.5).
4.5
Recent hair loss or change in texture. Change in shape, color, or brittleness of nails.
Health Promotion.
Amount of sun exposure; method of self-care for skin and hair.
Head.
Any unusually frequent or severe headache; any head injury, dizziness (syncope), or vertigo.
Eyes.
Difficulty with vision (decreased acuity, blurring, blind spots), eye pain, diplopia (double vision),
redness or swelling, watering or discharge, glaucoma or cataracts.
Health Promotion.
Wear glasses or contacts; last vision check or glaucoma test; how coping with loss of vision if any.
Ears.
Earaches, infections, discharge and its characteristics, tinnitus or vertigo.
Health Promotion.
Hearing loss, hearing aid use, how loss affects daily life, any exposure to environmental noise, and
method of cleaning ears.
117
Nose and Sinuses.
Discharge and its characteristics, any unusually frequent or severe colds, sinus pain, nasal
obstruction, nosebleeds, allergies or hay fever, or change in sense of smell.
Mouth and Throat.
Mouth pain, frequent sore throat, bleeding gums, toothache, lesion in mouth or tongue, dysphagia,
hoarseness or voice change, tonsillectomy, altered taste.
Health Promotion.
Pattern of daily dental care, use of dentures, bridge, and last dental checkup.
Neck.
Pain, limitation of motion, lumps or swelling, enlarged or tender nodes, goiter. Recent injuries (Fig.
4.6).
4.6
Breast.
Pain, lump, nipple discharge, rash, history of breast disease, any surgery on breasts.
Health Promotion.
Performs breast self-examination, including its frequency and method used; last mammogram.
Axilla.
Tenderness, lump or swelling, rash.
Respiratory System.
History of lung diseases (asthma, emphysema, bronchitis, pneumonia, TB), chest pain with
breathing, wheezing or noisy breathing, shortness of breath, how much activity produces shortness
of breath, cough, sputum (color, amount), hemoptysis, toxin or pollution exposure.
Health Promotion.
Last chest x-ray, TB skin test.
Cardiovascular.
Chest pain, pressure, tightness or fullness, palpitation, cyanosis, dyspnea on exertion (specify
amount of exertion [e.g., walking one flight of stairs, walking from chair to bath, or just talking]),
118
orthopnea, paroxysmal nocturnal dyspnea, nocturia, edema, history of heart murmur,
hypertension, coronary heart disease, anemia.
Vigorously pursue all vague chest pain similarities. Consider a woman with fatigue or vague
indigestion as a cardiac patient until proven otherwise.
Health Promotion.
Date of last ECG or other cardiac tests, cholesterol screening.
Peripheral Vascular.
Coldness, numbness and tingling, swelling of legs (time of day, activity), discoloration in hands or
feet (bluish red, pallor, mottling, associated with position, especially around feet and ankles),
varicose veins or complications, intermittent claudication, thrombophlebitis, ulcers.
Health Promotion.
Does the work involve long-term sitting or standing? Does the patient frequently cross his or her
legs at the knees? Wear support hose?
Gastrointestinal.
Appetite, food intolerance, dysphagia, heartburn, indigestion, pain (associated with eating), other
abdominal pain, pyrosis (esophageal and stomach burning sensation with sour eructation), nausea
and vomiting (character), vomiting blood, history of abdominal disease (liver or gallbladder, ulcer,
jaundice, appendicitis, colitis), flatulence, frequency of bowel movement, any recent change, stool
characteristics, constipation or diarrhea, black stools, rectal bleeding, rectal conditions
(hemorrhoids, fistula).
Health Promotion.
Use of antacids or laxatives. (Alternatively, diet history and substance habits can be placed here.)
Urinary System.
Frequency, urgency, nocturia (the number of times the person awakens at night to urinate, recent
change); dysuria; polyuria or oliguria; hesitancy or straining, narrowed stream; urine color (cloudy
or presence of hematuria); incontinence; history of urinary disease (kidney disease, kidney stones,
urinary tract infections, prostate); pain in flank, groin, suprapubic region, or low back.
Health Promotion.
Measures to avoid or treat urinary tract infections, use of Kegel exercises after childbirth.
Male Genital System.
Penis or testicular pain, sores or lesions, penile discharge, lumps, hernia.
Health Promotion.
Perform testicular self-examination? How frequently?
Female Genital System.
Menstrual history (age at menarche, last menstrual period, cycle and duration, any amenorrhea or
menorrhagia, premenstrual pain or dysmenorrhea, intermenstrual spotting), vaginal itching,
discharge and its characteristics, age at menopause, menopausal signs or symptoms,
postmenopausal bleeding.
Health Promotion.
Last gynecologic checkup and last Pap test.
Sexual Health.
Begin with: “I ask all patients about their sexual health.” Then ask: “Are you presently in a
119
relationship involving intercourse? Are the aspects of sex satisfactory to you and your partner? Are
condoms used routinely (if applicable)? Is there any dyspareunia (for female) or are there any
changes in erection or ejaculation (for male)? Are contraceptives used (if applicable)? Is the
contraceptive method satisfactory? Are you aware of contact with a partner who has any sexually
transmitted infection (chlamydia, gonorrhea, herpes, venereal warts, HIV/acquired
immunodeficiency syndrome [AIDS], or syphilis)?”
Musculoskeletal System.
History of arthritis or gout. In the joints: Pain, stiffness, swelling (location, migratory nature),
deformity, limitation of motion, noise with joint motion? In the muscles: Any muscle pain, cramps,
weakness, gait problems, or problems with coordinated activities? In the back: Any pain (location
and radiation to extremities), stiffness, limitation of motion, or history of back pain or disc disease?
Any recent injuries to the joints, muscles, or back? (Fig. 4.7)
4.7
Health Promotion.
How much walking per day? What is the effect of limited range of motion on ADLs such as
grooming, feeding, toileting, dressing? Are any mobility aids used?
Neurologic System.
History of seizure disorder, stroke, fainting, blackouts. Motor function: Weakness, tic or tremor,
paralysis, or coordination problems? Sensory function: Numbness, tingling (paresthesia)? Cognitive
function: Memory disorder (recent or distant, disorientation)? Mental status: Any nervousness,
mood change, depression, or history of mental health dysfunction or hallucinations? Conduct
suicide screening on all patients. See p. 61 for adolescent screening and p. 70 in Chapter 5 for full
description.
Health Promotion.
Alternatively, data about interpersonal relationships and coping patterns are placed here.
Hematologic System.
Bleeding tendency of skin or mucous membranes, excessive bruising, lymph node swelling,
exposure to toxic agents or radiation, blood transfusion and reactions.
120
Endocrine System.
History of diabetes or diabetic symptoms (polyuria, polydipsia, polyphagia), history of thyroid
disease, intolerance to heat and cold, change in skin pigmentation or texture, excessive sweating,
relationship between appetite and weight, abnormal hair distribution, nervousness, tremors, and
need for hormone therapy.
Functional Assessment (Including Activities of Daily Living)
Functional assessment measures a person's self-care ability in the areas of general physical health;
ADLs such as bathing, dressing, toileting, eating, walking; instrumental ADLs or those needed for
independent living such as housekeeping, shopping, cooking, doing laundry, using the telephone,
managing finances; nutrition; social relationships and resources; self-concept and coping; and home
environment.
Functional assessment instruments may be used to objectively measure the person's present
functional status and monitor changes over time (see Chapter 32 for more information).
Functional assessment questions listed here provide data on the lifestyle and type of living
environment to which the person is accustomed. Because the person may consider these questions
“private,” they are best asked later in the interview after rapport is established.
Self-Esteem, Self-Concept.
Education (last grade completed, other significant training), financial status (income adequate for
lifestyle and/or health concerns), value-belief system (religious practices and perception of personal
strengths).
Activity/Exercise.
A daily profile reflecting usual daily activities. Ask, “Tell me how you spend a typical day.” Note
ability to perform ADLs: independent or needs assistance with feeding, bathing, hygiene, dressing,
toileting, bed-to-chair transfer, walking, standing, or climbing stairs. Is there any use of a
wheelchair, prostheses, or mobility aids?
Record leisure activities enjoyed and the exercise pattern (type, amount per day or week, method
of warm-up session, method of monitoring the response of the body to exercise).
Sleep/Rest.
Sleep patterns, daytime naps, any sleep aids used.
Nutrition/Elimination.
Record the diet by a recall of all food and beverages taken over the past 24 hours. Ask, “Is that
menu typical of most days?” Describe eating habits and current appetite. Ask, “Who buys food and
prepares food? Are your finances adequate for food? Who is present at mealtimes?” Indicate any
food allergy or intolerance. Record daily intake of caffeine (coffee, tea, cola drinks).
Ask about usual pattern of bowel elimination and urinating, including problems with mobility or
transfer in toileting, continence, use of laxatives.
Interpersonal Relationships/Resources.
Social roles: Ask, “How would you describe your role in the family? How would you say you get
along with family, friends, and co-workers?” Ask about support systems composed of family and
significant others: “To whom could you go for support with a problem at work, with your health, or
a personal problem?” Include contact with spouse or partner, siblings, parents, children, friends,
organizations, workplace. “Is time spent alone pleasurable and relaxing, or is it isolating?” (See Fig.
4.8.)
121
4.8
Spiritual Resources.
Many people believe in a relationship between spirituality and health, and they may wish to have
spiritual matters addressed in the traditional health care setting. Use the Faith, Influence,
Community, and Address (FICA) questions to incorporate the person's spiritual values into the
health history.10 Faith: “Does religious faith or spirituality play an important part in your life? Do
you consider yourself to be a religious or spiritual person?” Influence: “How does your religious
faith or spirituality influence the way you think about your health or care for yourself?” Community:
“Are you a part of any religious or spiritual community or congregation?” Address: “Would you like
me to address any religious or spiritual issues or concerns with you?” See Chapter 2 for more
information.
Coping and Stress Management.
Types of stresses in life, especially in the past year; any change in lifestyle or any current stress;
methods tried to relieve stress and whether these have been helpful.
Personal Habits.
Tobacco, alcohol, street drugs: Ask, “Do you smoke cigarettes (pipe, use chewing tobacco)? At what
age did you start? How many packs do you smoke per day? How many years have you smoked?”
Record the number of packs smoked per day (PPD) and duration (e.g., 1 PPD × 5 years). Then ask,
“Have you ever tried to quit?” and “How did it go?” to introduce plans about smoking cessation.
Alcohol.
Health care professionals often fail to question about alcohol unless problems are obvious.
However, alcohol interacts adversely with all medications; is a factor in many social problems such
as assaults, rapes, high-risk sexual behavior, and child abuse; contributes to half of all fatal traffic
accidents; and accounts for 5% of all deaths in the United States. The latter figure is actually an
underestimate because alcohol-related conditions are underreported on death certificates.
Therefore be alert to early signs of hazardous alcohol use. Ask whether the person drinks alcohol.
If yes, ask specific questions about the amount and frequency of alcohol use: Ask, “When was your
last drink of alcohol? How much did you drink that time? In the past 30 days, about how many
days would you say that you drank alcohol? Has anyone ever said that you had a drinking
problem?”
You may wish to use a screening questionnaire to identify excessive or uncontrolled drinking
such as the Cut down, Annoyed, Guilty, and Eye-opener (CAGE) test6:
• Have you ever thought you should Cut down your drinking?
122
• Have you ever been Annoyed by criticism of your drinking?
• Have you ever felt Guilty about your drinking?
• Do you drink in the morning (i.e., an Eye opener)?
If the person answers “yes” to two or more CAGE questions, you should suspect alcohol abuse
and continue with a more complete substance-abuse assessment (see Chapter 6, p. 90). If the person
answers “no” to drinking alcohol, ask the reason for this decision (psychosocial, legal, health). Any
history of alcohol treatment? Involved in recovery activities? History of a family member with
problem drinking?
Illicit or Street Drugs.
Ask specifically about prescription painkillers such as OxyContin or Norco, cocaine, crack cocaine,
amphetamines, heroin, and marijuana. Indicate frequency of use and how use has affected work or
family.
Environment/Hazards.
Housing and neighborhood (living alone, knowledge of neighbors), safety of area, adequate heat
and utilities, access to transportation, and involvement in community services (Fig. 4.9). Note
environmental health, including hazards in workplace, hazards at home, use of seatbelts,
geographic or occupational exposures, and travel or residence in other countries, including time
spent abroad during military service.
4.9
Intimate Partner Violence.
Begin with open-ended questions: “How are things at home?” and “Do you feel safe?” These are
valuable initial screening questions because some people may not recognize that they are in abusive
situations or may be reluctant to admit it because of guilt, fear, shame, or denial. If the person
responds to feeling unsafe, follow up with closed-ended questions: “Have you ever been
emotionally or physically abused by your partner or someone important to you? Within the past
year, have you been hit, slapped, kicked, pushed, or shoved or otherwise physically hurt by your
partner or ex-partner?” If yes, ask: “By whom? How many times? Does your partner ever force you
into having sex? Are you afraid of your partner or ex-partner?” See Chapter 7 for more information.
Occupational Health.
Ask the person to describe his or her job. Ever worked with any health hazard such as asbestos,
inhalants, chemicals, repetitive motion? Wear any protective equipment? Any work programs in
place that monitor exposure? Aware of any health problems now that may be related to work
exposure?
Note the timing of the reason for seeking care and whether it may be related to change in work or
home activities, job titles, or exposure history. Take a careful smoking history, which may
123
contribute to occupational hazards. Finally ask the person what he or she likes or dislikes about the
job.
Perception of Health
Ask the person questions such as: “How do you define health? How do you view your situation
now? What are your concerns? What do you think will happen in the future? What are your health
goals? What do you expect from us as nurses or physicians (or other health care providers)?”
124
Developmental Competence
Children
The health history is adapted to include information specific for the age and developmental stage of
the child (e.g., the mother's health during pregnancy, labor and delivery, the perinatal period, and
the family unit) (Fig. 4.10). Note that the developmental history and nutritional data are listed as
separate sections because of their importance for current health.
4.10
Biographic Data
Include the child's name, nickname, address and phone number, parents'/caregivers' names and
work numbers, child's age and birth date, birthplace, sex, race, ethnic origin, and information about
other children and family members at home.
Source of History
1. Person providing information and relation to child
2. Your impression of reliability of information
3. Any special circumstances (e.g., the use of an interpreter)
Reason for Seeking Care
Record the parent's/caregivers' spontaneous statement. Because of the frequency of well-child visits
for routine health care, there will be more reasons such as “time for the child's checkup” or “she
needs the next shot.” Reasons for health problems may be initiated by the child, the
parent/caregiver, or a third party such as a classroom teacher or social worker.
Sometimes the reason stated may not be the real reason for the visit. A parent/caregiver may have
a “hidden agenda,” such as the mother who brought her 4-year-old child in because “she looked
pale.” Further questioning revealed that the mother had heard recently from a former college friend
whose 4-year-old child had just been diagnosed with leukemia.
Present Health or History of Present Illness
If the parent/caregiver or child seeks routine health care, include a statement about the usual health
of the child and any common health problems or major health concerns.
Describe any presenting symptom or sign, using the same format as for the adult. Some
additional considerations include:
125
• Severity of pain: “How does your child behave when he or she is
in pain?” (e.g., pulling at ears alerts parent/caregiver to ear pain).
Note the effect of pain on usual behavior (e.g., does it stop child
from playing?).
• Associated factors such as relation to activity, eating, and body
position.
• The parent's/caregiver's intuitive sense of a problem. As the
constant caregiver, this intuitive sense is very accurate. Even if
proved otherwise, this factor gives you an idea of the
parent's/caregiver's area of concern.
• Parent's/caregiver's coping ability and reaction of other family
members to child's symptoms or illness.
Past Health
Prenatal Status.
Start with an open-ended question: “Tell me about this pregnancy.” Then ask: “How was this
pregnancy spaced? Was it planned? What was the mother's attitude toward the pregnancy? What
was the partner's attitude? Was there prenatal care? At what month was prenatal care started? What
was the mother's health during pregnancy? Were there any complications (bleeding, excessive
nausea and vomiting, unusual weight gain, high blood pressure, swelling of hands and feet, falls,
infections—rubella or sexually transmitted infections)? During which month were diet and
medications prescribed and/or taken during pregnancy (dose and duration)?” Record the mother's
use of alcohol, street drugs, or cigarettes and any radiographic studies taken during pregnancy.
Labor and Delivery.
Parity of the mother, duration of the pregnancy, name of the hospital, course and duration of labor,
use of anesthesia, type of delivery (vertex, breech, cesarean section), birth weight, Apgar scores,
onset of breathing, any cyanosis, need for resuscitation, and use of special equipment or
procedures.
Postnatal Status.
Any problems in the nursery, length of hospital stay, neonatal jaundice, whether the baby was
discharged with the mother, whether the baby was breastfed or bottle-fed, weight gain, any feeding
problems, “blue spells,” colic, diarrhea, patterns of crying and sleeping, the mother's health
postpartum, the mother's reaction to the baby (Fig. 4.11), placement on back when sleeping.
126
4.11
Childhood Illnesses.
Age and any complications of measles, mumps, rubella, chickenpox, whooping cough, strep throat,
and frequent ear infections; any recent exposure to illness.
Serious Accidents or Injuries.
Age of occurrence, extent of injury, how the child was treated, and complications of auto accidents,
falls, head injuries, fractures, burns, and poisonings.
Serious or Chronic Illnesses.
Age of onset, how the child was treated, and complications of meningitis or encephalitis; seizure
disorders; asthma, pneumonia, and other chronic lung conditions; rheumatic fever; scarlet fever;
diabetes; kidney problems; sickle cell anemia; high blood pressure; and allergies.
Operations or Hospitalizations.
Reason for care, age at admission, name of surgeon or primary care providers, name of hospital,
duration of stay, how child reacted to hospitalization, any complications. (If child reacted poorly, he
or she may be afraid now and will need special preparation for the examination that is to follow.)
Immunizations.
Age when administered, date administered, and any reactions following immunizations (Fig. 4.12).
Because of outbreaks of measles across the United States, the American Academy of Pediatrics
recommends two doses of the measles-mumps-rubella vaccine, one at 12 to 15 months and one at
age 4 to 6 years.4
127
4.12
Pertussis (whooping cough) is on the rise, with periodic epidemics every 3 to 5 years.12 The
young infant is at high risk because of an immature immune system and because the schedule for
the vaccination does not start until 6 to 8 weeks of age. The CDC recommends the cocooning strategy,
which is the vaccination of parents/caregivers and others in close contact with the baby. Cocooning
may prevent approximately 20% of infant pertussis cases; however, it does not prevent
transmission from adults outside the home. In addition to cocooning, recommendations include
immunization of the mother during the third trimester of pregnancy. Transplacental transfer of
antibodies helps protect newborns until their first vaccine is given.12
The CDC recommends routine immunizations to protect against 15 childhood and adolescent
diseases and cancers.4 The impact of routine immunizations in the United States is enormous: more
than 732,000 children's lives saved and over 322 million hospitalizations prevented in the past 20
years.2 Yet many children are underimmunized: those living in poverty, children in certain ethnic
subgroups, and even children of attentive parents/caregivers who gain misinformation from the
Internet and have unwarranted concerns about vaccines. You should acknowledge these
parents'/caregivers' concerns in a respectful way, yet teach the scientific basis of immunizations.5
Allergies.
Any drugs, foods, contact agents, and environmental agents to which the child is allergic and the
reaction to the allergens. A true food allergy is an immune response caused by exposure to a food
substance. Common pediatric food allergies include cow's milk, eggs, peanuts, tree nuts, soybean,
and fish. A true food allergy can be life threatening but should be differentiated from a food
intolerance, which causes distress and illness yet is a nonimmunologic response and not life
threatening.13 Also note allergic reactions particularly common in childhood, such as allergic
rhinitis, insect hypersensitivity, eczema, and urticaria.
Medications.
Any prescription and OTC medications (or vitamins) that the child takes, including the dosage,
daily schedule, why the medication is given, and any problems.
Developmental History
Growth.
Height and weight at birth and at 1, 2, 5, and 10 years; any periods of rapid gain or loss (Fig. 4.13);
process of dentition (age of tooth eruption and pattern of loss).
128
4.13
Milestones.
Age when child first held head erect, rolled over, sat alone, walked alone, cut his or her first tooth,
said his or her first words with meaning, spoke in sentences, was toilet trained, tied shoes, dressed
without help. Does the parent/caregiver believe this development has been normal? How does this
child's development compare with that of siblings or peers?
Current Development (Children 1 Month Through Preschool).
Gross motor skills (rolls over, sits alone, walks alone, skips, climbs), fine motor skills (inspects
hands, brings hands to mouth, has pincer grasp, stacks blocks, feeds self, uses crayon to draw, uses
scissors), language skills (vocalizes, first words with meaning, sentences, persistence of baby talk,
speech problems), and personal-social skills (smiles, tracks movement with eyes to midline, past
midline, attends to sound by turning head, recognizes own name). If the child is undergoing toilet
training, indicate the method used, age of bladder/bowel control, parents'/caregivers' attitude
toward toilet training, and terms used for toileting.
School-Age Child.
Gross motor skills (runs, jumps, climbs, rides bicycle, general coordination), fine motor skills (ties
shoelace, uses scissors, writes letters and numbers, draws pictures), and language skills
(vocabulary, verbal ability, able to tell time, reading level).
Nutritional History
The amount of nutritional information needed depends on the child's age; the younger the child,
the more detailed and specific the data should be. For the infant, record whether breastfeeding or
bottle-feeding. If the child is breastfed, record nursing frequency and duration, any supplements
(vitamin, iron, fluoride, bottles), family support for nursing, and age and method of weaning. If the
child is bottle-fed, record type of formula used, frequency and amount, any problems with feeding
(spitting up, colic, diarrhea), and supplements used; discourage any bottle propping. Record
introduction of solid foods (age when the child began eating solids, which foods, whether foods are
home or commercially made, amount given, child's reaction to new food, parent's/caregiver's
reaction to feeding).
For preschool and school-age children and adolescents, record the child's appetite, 24-hour diet
recall (meals, snacks, amounts), vitamins taken, how much junk food is eaten, who eats with the
child, food likes and dislikes, and parent's/caregiver's perception of child's nutrition.
129
A weeklong diary of food intake may be more accurate than a spot 24-hour recall. Also consider
cultural practices in assessing child's diet.
Family History
As with the adult, diagram a family tree for the child, including siblings, parents, and grandparents
(see p. 48). Ask specifically for the family history of heart disease, high blood pressure, diabetes,
blood disorders, cancer, sickle cell anemia, arthritis, allergies, obesity, cystic fibrosis, mental illness,
seizure disorder, kidney disease, developmental delay, learning disabilities, birth defects, and
sudden infant death. Ask about biological relatives for the genogram. Never assume relationships.
Always ask to assure you understand the family dynamic.
Review of Systems
General.
Significant gain or loss of weight, failure to gain weight appropriate for age, frequent colds, ear
infections, illnesses, energy level, fatigue, overactivity, and behavioral change (irritability, increased
crying, nervousness).
Skin.
Birthmarks, skin disease, pigment or color change, mottling, change in mole, pruritus, rash, lesion,
acne, easy bruising or petechiae, easy bleeding, and changes in hair or nails (Fig. 4.14).
4.14
Head.
Headache, head injury, dizziness.
Eyes.
Strabismus, diplopia, pain, redness, discharge, cataracts, vision changes, reading problems. Is the
child able to see the board at school? Does the child sit too close to the television?
Health Promotion.
Use of eyeglasses, date of last vision screening.
Ears.
Earaches, frequency of ear infections, myringotomy tubes in ears, discharge (characteristics),
cerumen, ringing or crackling, and whether parent/caregiver perceives any hearing problems.
130
Health Promotion.
How does the child clean his or her ears?
Nose and Sinuses.
Discharge and its characteristics, frequency of colds, nasal stuffiness, nosebleeds, and allergies.
Mouth and Throat.
History of cleft lip or palate, frequency of sore throats, toothache, caries, sores in mouth or tongue,
tonsils present, mouth breathing, difficulty chewing, difficulty swallowing, and hoarseness or voice
change.
Health Promotion.
Child's pattern of brushing teeth and last dental checkup.
Neck.
Swollen or tender glands, limitation of movement, or stiffness.
Breast.
For preadolescent and adolescent girl, when did she notice that her breasts were changing? What is
the girl's self-perception of development? Does the female older adolescent perform breast self-
examination? (See Chapter 18 for suggested phrasing of questions.)
Respiratory System.
Croup or asthma, wheezing or noisy breathing, shortness of breath, chronic cough.
Cardiovascular System.
Congenital heart problems, history of murmur, and cyanosis (what prompts this condition). Is there
any limitation of activity, or can the child keep up with peers? Is there any dyspnea on exertion,
palpitations, high blood pressure, or coldness in the extremities?
Gastrointestinal System.
Abdominal pain, nausea and vomiting, history of ulcer, frequency of bowel movements, stool color
and characteristics, diarrhea, constipation or stool holding, rectal bleeding, anal itching, history of
pinworms, and use of laxatives.
Urinary System.
Painful urination, polyuria/oliguria, narrowed stream, urine color (cloudy, dark), history of urinary
tract infection, whether toilet trained, when toilet training was planned, any problems, bed-wetting
(when the child started, frequency, associated with stress, how child feels about it).
Male Genital System.
Penile or testicular pain, whether told if testes are descended, any sores or lesions, discharge, hernia
or hydrocele, or swelling in scrotum during crying. Has the preadolescent or adolescent boy noticed
any change in the penis and scrotum? Is the boy familiar with normal growth patterns and
nocturnal emissions? Screen for sexual abuse. (See Chapter 25 for suggested phrasing of questions.)
Female Genital System.
Has the girl noted any genital itching, rash, vaginal discharge? For the preadolescent and
adolescent girl, when did menstruation start? Was she prepared? Is the girl familiar with normal
development patterns? Screen for sexual abuse. (See Chapter 27 for suggested phrasing of
questions.)
Sexual Health.
What is the child's attitude toward the opposite sex? Who provides sex education? How does the
family deal with sex education, masturbation, dating patterns? Is the adolescent in a relationship
involving intercourse? Does he or she have information on birth control and sexually transmitted
infections? (See Chapters 25 and 27 for suggested phrasing of questions.)
131
Musculoskeletal System.
In bones and joints: arthritis, joint pain, stiffness, swelling, limitation of movement, gait strength
and coordination. In muscles: pain, cramps, and weakness. In the back: pain, posture, spinal
curvature, and any treatment. Any recent injuries.
Neurologic System.
Numbness and tingling. (Behavioral and cognitive issues are covered in the sections on
development and interpersonal relationships.)
Hematologic Systems.
Excessive bruising, lymph node swelling, and exposure to toxic agents or radiation.
Endocrine System.
History of diabetes or thyroid disease; excessive hunger, thirst, or urinating; abnormal hair
distribution; and precocious or delayed puberty.
Functional Assessment (Including Activities of Daily Living)
Interpersonal Relationships.
Within the family constellation, record the child's position in family; whether the child is adopted;
who lives with the child; who is the primary caregiver; who is the daycare provider if both
parents/caregivers work outside the home; any support from relatives, neighbors, or friends; and
the ethnic or cultural milieu.
Indicate family cohesion (Fig. 4.15). Does the family enjoy activities as a unit? Has there been a
recent family change or crisis (death, divorce, move)? Record information on child's self-image and
level of independence. Does the child use a security blanket or toy? Is there any repetitive behavior
(bed-rocking, head-banging), pica, thumb-sucking, or nail-biting? Note method of discipline used.
Indicate type used at home. How effective is it? Who disciplines the child? Is there any occurrence
of negativism, temper tantrums, withdrawal, or aggressive behavior?
4.15
Provide information on the child's friends: whether the child makes friends easily. How does the
child get along with friends? Does he or she play with same-age or older or younger children?
Activity and Rest.
Record the child's play activities. Indicate amount of active and quiet play, outdoor play, time
watching television, and special hobbies or activities. Record sleep and rest. Indicate pattern and
number of hours at night and during the day and the child's routine at bedtime. Is the child a sound
sleeper, or is he or she wakeful? Does the child have nightmares, night terrors, or somnambulation?
How does the parent/caregiver respond? Does the child have naps during the day?
Record school attendance. Any experience with daycare or nursery school? In what grade is the
132
child in school? Has the child ever skipped a grade or been held back? Does the child seem to like
school? What is his or her school performance? Are the parent/caregiver and child satisfied with the
performance? Were days missed in school? Provide a reason for the absence. (These questions give
an important index to the child's functioning outside the home.)
Economic Status.
Ask about the parents'/caregivers' occupations. Indicate the number of hours each person is away
from home. Do parents/caregivers perceive their income to be adequate? What is the effect of illness
on financial status?
Home Environment.
Where does family live (house, apartment)? Is the size of the home adequate? Is there access to an
outdoor play area? Does the child share a room, have his or her own bed, and have toys appropriate
for his or her age?
Environmental Hazards.
Inquire about home safety (precautions for poisons, medications, household products, presence of
gates for stairways, and safe yard equipment). Inquire about the home structure (adequate heating,
ventilation, bathroom facilities), neighborhood (residential or industrial, age of neighbors, safe play
areas, playmates available, distance to school, amount of traffic, whether area is remote or
congested and overcrowded, if crime is a problem, presence of air or water pollution), and
automobile (child safety seat, seatbelts).
Coping/Stress Management.
Is the child able to adapt to new situations? Record recent stressful experiences (death, divorce,
move, loss of special friend). How does the child cope with stress? Any recent change in behavior or
mood? Has counseling ever been sought?
Habits.
Has the child ever tried cigarette smoking? How much did he or she smoke? Has the child ever
tried alcohol? How much alcohol did he or she drink weekly or daily? Has the child ever tried other
drugs (marijuana, cocaine, amphetamines, barbiturates)?
Health Promotion.
Who is the primary health care provider? When was the child's last checkup? Who is the dental care
provider and when was the last dental checkup? Provide date and result of screening for vision,
hearing, urinalysis, phenylketonuria, hematocrit, TB skin test, sickle cell trait, blood lead, and other
tests specific for high-risk populations.
The Adolescent
This section presents a psychosocial review of symptoms intended to maximize communication
with youth. The HEEADSSS method of interviewing focuses on assessment of the Home
environment, Education and employment, Eating, peer-related Activities, Drugs, Sexuality,
Suicide/depression, and Safety from injury and violence (Fig. 4.16). The tool minimizes adolescent
stress because it moves from expected and less-threatening questions to those that are more
personal.8 Interview the youth alone while the parent/caregiver waits outside and fills out past
health questionnaires.
133
134
4.16 (Klein et al., 2014.)
In addition ask, “How many hours of sleep do you get on most nights of the week? What time do
you actually go to bed? What time do you wake up on school days? What time would you wake up
if left alone? Which activities are you in at school or after school? Do your activities change the time
that you go to bed or get up in the morning?”7 Note that teens need about 9 hours of sleep per
night, yet most U.S. teens get far less than that. Older teens report <6.5 to 7 hours per night; younger
teens report 7.7 hours per night.7
Ask about driving; stress the importance of keeping hands on the wheel and paying attention to
the road. Evidence shows the risk of crash increases significantly among novice drivers when they
perform secondary tasks (e.g., dialing or reaching for a cell phone, texting, eating, reaching for
another object, looking at a roadside object).1
135
136
References
1. Adeola R, Omorogbe A, Johnson A. Get the message: A teen distracted driving
program. J Trauma Nurs. 2016;23(6):312–320.
2. Centers for Disease Control and Prevention. Report shows 20-year US immunization
program spares millions of children from diseases.
https://www.cdc.gov/media/releases/2014/p0424-immunization-program.html;
2014.
3. Centers for Disease Control and Prevention. Gay and bisexual men's health.
https://www.cdc.gov/msmhealth/for-your-health.htm; 2017.
4. Centers for Disease Control and Prevention (CDC). Immunization schedules for
health care professionals. http://www.cdc.gov/vaccines/schedules/index.html; 2017.
5. Centers for Disease Control and Prevention. Recommended immunization schedule
for adults aged 19 years or older, United States 2018.
https://www.cdc.gov/vaccines/schedules/hcp/adult.html; 2018.
6. Ewing JA. Detecting alcoholism: The CAGE questionnaire. JAMA. 1984;252:1905–
1907.
7. George NM, Davis JE. Assessing sleep in adolescents through a better
understanding of sleep physiology. Am J Nurs. 2013;113(6):26–32.
8. Klein DA, Goldenring JM, Adelman WP. HEEADSSS 3.0: The psychosocial
interview for adolescents updated for a new century fueled by media. [Contemporary
pediatrics] http://contemporarypediatrics.modernmedicine.com/contemporary-
pediatrics/content/tags/adolescent-medicine/heeadsss-30-psychosocial-interview-
adolesce?page=0,1; 2014.
9. Lehne RA. Pharmacology for nursing care. 9th ed. Elsevier: St. Louis; 2016.
10. Post SG, Puchalski CM, Larson DB, et al. Physician and patient spirituality:
Professional boundaries, competency, and ethics. Ann Intern Med. 2000;132:578–
583.
11. Rose AJ, Fischer SH, Paasche-Orlow MK. Beyond medication reconciliation: The
correct medication list. JAMA. 2017;317(20):2057–2058.
12. Suryadevara M, Domachowske JB. Prevention of pertussis through adult
vaccination. Hum Vaccin Immunother. 2015;11(7):1744–1747.
13. Turnbull JL, Adams HN, Gorard DA. Review article: The diagnosis and
management of food allergy and food intolerances. Aliment Pharmacol Ther.
2015;41(1):3–25.
aIn the past, this statement was called the chief complaint (CC). Avoid this title because it labels the
person a “complainer” and, more important, does not include wellness needs.
137
https://www.cdc.gov/media/releases/2014/p0424-immunization-program.html
https://www.cdc.gov/msmhealth/for-your-health.htm
http://www.cdc.gov/vaccines/schedules/index.html
https://www.cdc.gov/vaccines/schedules/hcp/adult.html
http://contemporarypediatrics.modernmedicine.com/contemporary-pediatrics/content/tags/adolescent-medicine/heeadsss-30-psychosocial-interview-adolesce?page=0,1
C H A P T E R 5
138
Mental Status Assessment
139
Structure and Function
Defining Mental Status
Mental status is a person's emotional (feeling) and cognitive (knowing) function. Optimal
functioning aims toward simultaneous life satisfaction in work, in caring relationships, and within
the self (Fig. 5.1). Mental health is “a state of well-being in which every individual realizes his or her
own potential, can cope with normal stresses of life, can work productively and fruitfully, and is
able to make a contribution to her or his community.”27 Mental health is relative and ongoing. We
all have days when we feel anxious or depressed or feel as if we cannot cope. Usually these feelings
dissipate and we return to healthy function socially and occupationally.
5.1
The stress surrounding a traumatic life event (death of a loved one, serious illness) tips the
balance, causing transient dysfunction. This is an expected response to a trauma. For example,
bereavement may lead to someone feeling down or depressed, but is an expected emotional
response to a major loss and does not usually induce a major depressive episode.1 Most grieving
people feel sadness, tearfulness, loss of appetite, and insomnia; these feelings last 2 to 6 months. The
survivor needs social support but no medical treatment. Mental status assessment during a
traumatic life event can identify remaining strengths and help the individual mobilize resources
and use coping skills.
A mental disorder is apparent when a person's response is much greater than the expected
reaction to a traumatic life event. It is a clinically significant behavioral, emotional, or cognitive
syndrome that is associated with significant distress (a painful symptom) or disability (impaired
functioning) involving social, occupational, or key activities.1 For example, major depression is
characterized by feelings that are unrelenting or include delusional or suicidal thinking, feelings of
low self-esteem or worthlessness, or loss of ability to function.1
Mental disorders include organic disorders (caused by brain disease of known specific organic
cause [e.g., delirium, dementia, alcohol and drug intoxication, and withdrawal]) and psychiatric
mental disorders (in which an organic etiology has not yet been established [e.g., anxiety disorder
or schizophrenia]). Mental status assessment documents a dysfunction and determines how that
dysfunction affects self-care in everyday life.
Mental status cannot be scrutinized directly like the characteristics of skin or heart sounds. Its
functioning is inferred through assessment of an individual's behaviors:
Consciousness: Being aware of one's own existence, feelings, and thoughts and of the
environment. This is the most elementary of mental status functions.
Language: Using the voice to communicate one's thoughts and feelings. This is a basic tool of
140
humans, and its loss has a heavy social impact on the individual.
Mood and affect: Both of these elements deal with the prevailing feelings. Affect is a
temporary expression of feelings or state of mind, and mood is more durable, a prolonged
display of feelings that color the whole emotional life.
Orientation: The awareness of the objective world in relation to the self, including person,
place, and time.
Attention: The power of concentration, the ability to focus on one specific thing without being
distracted by many environmental stimuli.
Memory: The ability to lay down and store experiences and perceptions for later recall. Recent
memory evokes day-to-day events; remote memory brings up years' worth of experiences.
Abstract reasoning: Pondering a deeper meaning beyond the concrete and literal.
Thought process: The way a person thinks; the logical train of thought.
Thought content: What the person thinks—specific ideas, beliefs, the use of words.
Perceptions: An awareness of objects through the five senses.
Developmental Competence
Infants and Children
Emotional and cognitive functioning mature progressively from simple reflex behavior into
complex logical and abstract thought. It is difficult to separate and trace the development of just one
aspect of mental status. All aspects are interdependent. For example, consciousness is rudimentary
at birth because the cerebral cortex is not yet developed; the infant cannot distinguish the self from
the mother's body. Consciousness gradually develops along with language so that, by 18 to 24
months, the child learns that he or she is separate from objects in the environment and has words to
express this. We also can trace language development: from the differentiated crying at 4 weeks, the
cooing at 6 weeks, through one-word sentences at 1 year, to multiword sentences at 2 years. The
concept of language as a social tool of communication occurs around 4 to 5 years of age, coincident
with the child's readiness to play cooperatively with other children.
Attention gradually increases in span through preschool years so that by school age most
children are able to sit and concentrate on their work for a period of time. Some children are late in
developing concentration. School readiness coincides with the development of the thought process;
around age 7 years thinking becomes more logical and systematic, and the child is able to reason
and understand. Abstract thinking, the ability to consider a hypothetical situation, usually develops
between ages 12 and 15 years, although a few adolescents never achieve it.
An estimated 1 in 7 children (14%) ages 2 to 8 years has a mental, behavioral, or developmental
disorder, and that number increases to 1 in 5 (20%) for children and adolescents ages 9 to 17 years.3
A childhood mental disorder is one that is diagnosed and begins in childhood (e.g., attention-
deficit/hyperactivity disorder [ADHD], behavioral or conduct problems, anxiety, depression,
autism spectrum disorders). Adolescents ages 12 to 17 years also experience illicit drug use or
alcohol use disorder and cigarette dependence. Substance abuse disorders and cigarette
dependence may present as changes in how children learn, behave, or handle emotions.3
Substance use disorders can interact with other factors, resulting in suicide, the second leading
cause of death among adolescents ages 12 to 17 years.3 Youth suicides are nearly twice as high in
rural as compared to urban areas. Although the reason is unclear, potential causes include limited
access to mental health services, increased access to firearms, increased social isolation, and
increased economic hardships in rural areas. To address the urban-rural suicide disparity, increased
access and acceptability of mental health services are imperative.7 Although mental health is a
prevalent problem among children and adolescents, only 15% to 25% of children receive the
specialty care needed to treat their psychiatric illness.24
The Aging Adult
The aging process leaves the parameters of mental status mostly intact. There is no decrease in
general knowledge and little or no loss in vocabulary. Response time is slower than in youth; it
takes a bit longer for the brain to process information and to react to it. Thus performance on timed
intelligence tests may be lower for the aging person—not because intelligence has declined, but
because it takes longer to respond to the questions. The slower response time affects new learning;
141
if a new presentation is rapidly paced, the older person does not have time to respond to it.20
Recent memory, which requires some processing (e.g., medication instructions, 24-hour diet
recall, names of new acquaintances), is somewhat decreased with aging. Remote memory is not
affected.
Age-related changes in sensory perception can affect mental status. For example, vision loss (as
detailed in Chapter 15) may result in apathy, social isolation, and depression. Hearing changes are
common in older adults (see the discussion of presbycusis in Chapter 16). Age-related hearing loss
involves high-frequency sounds. Consonants are high-frequency sounds; therefore, older people
who have difficulty hearing them have problems with normal conversation. This problem produces
frustration, suspicion, and social isolation and may make the person look confused.
The era of older adulthood contains more potential for loss (e.g., loss of loved ones, job status and
prestige, income, and an energetic and resilient body) than do earlier eras. In addition, living with
chronic diseases (e.g., heart failure, cancer, diabetes, osteoporosis) may increase the fear of loss of
independence or of death. The grief and despair surrounding these losses can affect mental status.
The losses can result in disorientation, disability, or depression.
In a given year mental disorders affect an estimated 18.3% of U.S. adults ages 18 years and older.
A smaller group, approximately 4.2%, suffers from a serious mental illness.15 The global impact of
mental illness is enormous, with an estimated 14.3% of deaths worldwide being attributed to
mental illness.25 The problem is lack of access to good-quality mental health services, both in the
United States for poor, homeless, uninsured, or underinsured people and in the rest of the world for
low- and middle-income countries. An estimated 76% to 85% of people with mental illness in low-
and middle-income countries and 35% to 50% of people with mental illness in high-income
countries receive no treatment.26
Components of the Mental Status Examination
The full mental status examination is a systematic check of emotional and cognitive functioning.
However, the steps described here rarely need to be taken in their entirety. Usually you can assess
mental status through the context of the health history interview. During that time keep in mind the
four main headings of mental status assessment:
Appearance, Behavior, Cognition,
and Thought processes, or
A, B, C, T
Integrating the mental status examination into the health history interview is sufficient for most
people. You will collect ample data to be able to assess mental health strengths and coping skills
and to screen for any dysfunction.
It is necessary to perform a full mental status examination when you discover any abnormality in
affect or behavior and in the following situations:
• Patients whose initial brief screening suggests an anxiety
disorder or depression.
• Family members concerned about a person's behavioral changes
such as memory loss or inappropriate social interaction.
• Report of relevant organic behavioral symptoms, including
bizarre behavior (e.g., nocturnal wandering), concentration
problems, trouble with simple activities such as using the
television remote, inappropriate judgment, or linguistic difficulty.
• Brain lesions (trauma, tumor, stroke). A mental status
assessment documents any emotional or cognitive change
associated with the lesion. Not recognizing these changes hinders
care planning and creates problems with social readjustment.
• Aphasia (the impairment of language ability secondary to brain
142
damage). A mental status examination assesses language
dysfunction and any emotional problems associated with it, such
as depression or agitation.
• Symptoms of psychiatric mental illness, especially with acute
onset.
In every mental status examination, note these factors from the health history that could affect
your interpretation of the findings:
• Any known illnesses or health problems such as alcohol use
disorders or chronic renal disease.
• Current medications with side effects that may cause confusion
or depression.
• The usual educational and behavioral level—note that factor as
the normal baseline, and do not expect performance on the mental
status examination to exceed it.
• Responses to personal history questions indicating current
stress, social interaction patterns, sleep habits, drug and alcohol
use.
In the following examination the sequence of steps forms a hierarchy in which the most basic
functions (consciousness, language) are assessed first. The first steps must be assessed accurately to
ensure validity for the steps to follow (i.e., if consciousness is clouded, the person cannot be
expected to have full attention and to cooperate with new learning). Or if language is impaired,
subsequent assessment of new learning or abstract reasoning (anything that requires language
functioning) can give erroneous conclusions.
143
Objective Data
Equipment Needed
(Occasionally)
Pencil, paper, reading material
Normal Range of Findings/Abnormal Findings
Appearance
Posture.
Posture is erect, and position is relaxed.
Sitting on edge of
chair or curled in bed,
tense muscles,
frowning, darting and
watchful eyes, and
restless pacing occur
with anxiety and
hyperthyroidism.
Sitting slumped in
chair, slow walk,
dragging feet occur
with depression and
some organic brain
diseases.
Body Movements.
Body movements are voluntary, deliberate, coordinated, smooth, and even.
Restless, fidgety
movement or
hyperkinetic
appearance occurs
with anxiety.
Apathy and
psychomotor
slowing occur
with depression
and dementia.
Abnormal
posturing and
bizarre gestures
occur with
schizophrenia.
Facial grimaces
may occur with
pain.
Involuntary tics
can occur with
neurologic
disorders (e.g.,
Tourette
syndrome, tardive
dyskinesia; see
Table 24.4, Abnor-
malities in Muscle
Movement, p.
672).
Dress.
Dress is appropriate for setting, season, age, gender, and social group. Clothing fits and is worn appropriately.
Inappropriate
dress can occur
with organic brain
syndrome.
Eccentric dress
combination and
bizarre makeup
occur with
schizophrenia or
manic syndrome.
Grooming and Hygiene.
The person is clean and well groomed; hair is neat and clean; women have moderate or no makeup; men are
shaved, or beard or mustache is well groomed. Nails are clean (although some jobs leave nails chronically dirty).
Note congruence between dress/grooming and age. NOTE: A disheveled appearance in a previously well-
groomed person is significant. Use care in interpreting clothing that is disheveled, bizarre, or in poor repair;
piercings; and tattoos because these sometimes reflect the person's economic status or a deliberate fashion trend
(especially among adolescents).
Unilateral neglect
(total inattention
to one side of
body) occurs
following some
strokes.
Inappropriate
dress, poor
hygiene, and lack
of concern with
appearance occur
with depression
144
and severe
Alzheimer
disease.
Meticulously
dressed and
groomed
appearance and
fastidious manner
may occur with
obsessive-
compulsive
disorders.
Pupils.
Note pupil size and reaction to light.
Dilated or constricted
pupils may be a sign
of recent drug use.
Recent anisocoria
(unequal pupil size)
can be the result of a
brain tumor.
Behavior
Level of Consciousness.
The person is awake, alert, and aware of stimuli from the environment and within the self and responds
appropriately and reasonably soon to stimuli.
Loses track of
conversation, falls
asleep.
Lethargic
(drowsy),
obtunded
(confused) (see
Table 5.1, Levels
of Consciousness,
p. 75).
Facial Expression.
The look is appropriate to the situation and changes appropriately with the topic. There is comfortable eye
contact unless precluded by cultural norm.
Flat, masklike
expression occurs
with parkinsonism
and depression.
Speech.
Judge the quality of speech by noting that the person makes laryngeal sounds effortlessly and shares
conversation appropriately.
Dysphonia is
abnormal volume,
pitch (see Table
5.2, Speech
Disorders, p. 76).
Monopolizes
interview or is
silent, secretive, or
uncommunicative.
The pace of the conversation is moderate, and stream of talking is fluent. Slow, monotonous
speech with
parkinsonism or
depression. Rapid-fire,
pressured, and loud
talking occurs with
manic syndrome.
Articulation (ability to form words) is clear and understandable. Dysarthria is distorted
speech (see Table 5.2).
Misuses words; omits
letters, syllables, or
words; transposes
words; occurs with
aphasia.
Circumlocution or
repetitious abnormal
patterns: neologism,
echolalia (see Table
5.6, p. 80).
Word choice is effortless and appropriate to educational level. The person completes sentences, occasionally pausing
to think.
Unduly long word-
finding or failure in
word search occurs
with aphasia.
Mood and Affect.
Judge this by body language and facial expression and by asking directly, “How do you feel today?” or “How
do you usually feel?” The mood should be appropriate to the person's place and condition and change
appropriately with topics. The person is willing to cooperate with you.
See Table 5.3, Mood
and Affect
Abnormalities, p. 77,
and Table 5.5,
Delirium, Dementia,
and Depression, p. 79.
Cognitive Functions
Orientation.
You can discern orientation through the course of the interview by asking about the person's address, phone
number, and health history. Or ask for it directly, using tact, by saying, “Some people have trouble keeping up
with the dates while in the hospital. Do you know today's date?” Assess:
Time: Day of week, date, year, season
Place: Where person lives, present location, type of building, name of city and state
Person: Own name, age, who examiner is
Many hospitalized people normally have trouble with the exact date but know the year and are fully oriented on
the remaining items.
Disorientation occurs
with delirium and
dementia. Orientation
is usually lost in this
order: first to time,
145
then to place, and
rarely to person.
Attention Span.
Check the person's ability to concentrate by noting whether he or she completes a thought without wandering.
Note any distractibility or difficulty attending to you. Or give a series of directions to follow and note the correct
sequence of behaviors, such as, “Please take this glass of water with your left hand, drink from it, shift it to your
right hand, and set it on the table.” Note that attention span commonly is impaired in people who are anxious,
fatigued, or drug intoxicated.
Digression from
initial thought.
Irrelevant replies
to questions.
Easily distracted;
“stimulus bound”
(i.e., any new
stimulus quickly
draws attention).
Confusion,
negativism.
Recent Memory.
Assess recent memory in the context of the interview by the 24-hour diet recall or by asking the time the person
arrived at the agency. Ask questions you can corroborate. This screens for the occasional person who
confabulates or makes up answers to fill in the gaps of memory loss.
Recent memory deficit
occurs with delirium,
dementia, amnestic
syndrome, or
Korsakoff syndrome
in chronic alcoholism.
Remote Memory.
In the context of the interview, ask the person verifiable past events (e.g., ask to describe past health, the first job,
birthday and anniversary dates, and historical events that are relevant for that person).
Remote memory is
lost when the cortical
storage area for that
memory is damaged
(e.g., Alzheimer
dementia or any
disease that damages
the cerebral cortex).
New Learning—The Four Unrelated Words Test.
This tests the person's ability to lay down new memories. It is a highly sensitive and valid memory test. It
requires more effort than does the recall of personal or historic events. It also avoids the danger of unverifiable
material.
Say to the person: “I am going to say four words. I want you to remember them. In a few minutes I will ask you
to recall them.” To be sure the person has understood, have the person repeat the words. Pick four words with
semantic and phonetic diversity:
1. brown
2. honesty
3. tulip
4. eyedropper
1. fun
2. carrot
3. ankle
4. loyalty
After 5 minutes, ask for the recall of the four words. To test the duration of memory, ask for a recall at 10 minutes
and at 30 minutes. The normal response for people younger than 60 years is an accurate three- or four-word recall
after a 5-, 10-, and 30-minute delay.22
People with
Alzheimer dementia
score a zero- or one-
word recall. Impaired
new learning ability
also occurs with
anxiety (because of
inattention and
distractibility) and
depression (because of
lack of effort
mobilized to
remember).
Additional Testing for Persons With Aphasia Aphasia is the loss of
the ability to speak or
write coherently or to
understand peech or
writing as a result of a
stroke or brain
damage (see Table 5.2,
p. 76).
Word Comprehension.
Point to articles in the room, parts of the body, or articles from pockets and ask the person to name them.
Reading.
Ask the person to read available print. Be aware that reading is related to educational level. Use caution that you
are not testing literacy. Ensure that the person has reading glasses if needed, and use a large-print item if
possible.
Writing.
Ask the person to make up and write a sentence describing the weather or their job. Note coherence, spelling,
and parts of speech (the sentence should have a subject and a verb).
Reading and writing
are important in
planning health
teaching and
rehabilitation.
Agraphia (inability to
communicate through
writing) often occurs
in patients with
aphasia.22
Thought Processes and Perceptions
Thought Processes.
Ask yourself, “Does this person make sense? Can I follow what the person is saying?” The way a person thinks
should be logical, goal directed, coherent, and relevant. The person should complete a thought.
Illogical, unrealistic
thought processes.
Digression from initial
thought. Ideas run
together. Evidence of
blocking (person stops
in middle of thought)
(see Table 5.6,
Thought Process
Abnormalities, p. 80).
Thought Content.
What the person says should be consistent and logical.
Obsessions,
compulsions (see
146
Table 5.7, Thought
Content
Abnormalities, p. 81).
Perceptions.
The person should be consistently aware of reality. The perceptions should be congruent with yours. Ask the
following questions:
• How do people treat you?
• Do other people talk about you?
• Do you feel as if you are being watched, followed, or controlled?
• Is your imagination very active?
• Have you heard your name when alone?
Illusions,
hallucinations (see
Table 5.8, Perception
Abnormalities, p. 81).
Auditory and visual
hallucinations occur
with psychiatric and
organic brain disease
and psychedelic
drugs. Tactile
hallucinations occur
with alcohol
withdrawal.
Screen for Anxiety Disorders.
Anxiety and depression are the two most common mental health problems seen in people seeking general
medical care. Anxiety disorders are common, disabling, and often untreated. You can screen for core anxiety
symptoms by administering the first 2 questions (GAD-2) from the 7-item generalized anxiety disorder scale
(GAD-7) listed in Fig. 5.2. Scores on the GAD-2 range from 0 to 6; a score of 0 suggests that no anxiety disorder is
present, whereas a score ≥3 is suggestive of GAD.17 The full scale identifies probable GAD and is a severity
measure in that increasing scores are associated with increasing impairment and disability.
5.2 Screen for anxiety symptoms. (Kroenke, 2007.)
The four most
common anxiety
disorders are
GAD, panic
disorder, social
anxiety disorder,
posttraumatic
stress disorder
(PTSD) (see Table
5.4, Anxiety
Disorders, p. 78).
A score of 10 on
the GAD-7
identifies GAD;
scores of 5, 10, and
15 represent mild,
moderate, and
severe levels of
anxiety. More
recently, research
suggests that a
score ≥8 on the
GAD-7 may better
identify patients
with GAD.17
Screen for Depression.
Many formal screening tools are available. However, a shorter screening method is the Patient Health
Questionnaire-2 (PHQ-2), which entails asking two questions about depressed mood and anhedonia (little
interest or pleasure in doing things) that will detect a majority of depressed patients.10 Thus you can ask: “Over
the past 2 weeks have you felt down, depressed, or hopeless?” and “Over the past 2 weeks, have you felt little
interest or pleasure in doing things?”
Finding positive
answers to these
questions then
requires further
diagnostic tools to
assess specific
depressive disorders
(see Table 5.5).
The PHQ-2 works as a screening tool for depression. If the person answers “several days” or higher, administer
the full PHQ-919 (Fig. 5.3). Add the totals for each of the three columns together to obtain the severity score. If
question 10 is answered “somewhat difficult” or greater, it indicates functional impairment.
A PHQ-9 score of 5 to
9 = minimal
symptoms; 10 to 14 =
minor depression; 15
to 19 = major
depression,
moderately severe;
≥20 = major
depression, severe.
Treatment
147
5.3 (Developed by Spitzer, R. L., Williams, J. B. W, Kroenke, K., et al. 1999.)
recommendations and
follow up for each
score are available in
the literature.
Screen for Suicidal Thoughts.
When a person expresses feelings of sadness, hopelessness, despair, or grief, it is important to assess for any
possible risk of physical harm to himself or herself. Begin with more general questions. If you hear affirmative
answers, continue with more specific questions:
• Have you ever felt that life is not worth living?
• Have you ever thought of hurting yourself? If so, how often?
• Do you feel like hurting yourself now?
• Do you have a plan to hurt yourself?
• How would you do it?
• What would happen if you were dead?
• How would other people react if you were dead?
• Whom could you tell if you felt like killing yourself?
It is very difficult, especially for beginning examiners, to question people about possible suicidal wishes.
Examiners fear an invasion of privacy and may have their own normal denial of death and suicide. However,
the risk is far greater if you skip these questions when you have the slightest clue that they are appropriate. You
may be the only health professional to pick up clues of suicide risk. You are responsible for encouraging the
person to talk about suicidal thoughts.
Another recommendation is to have the person sign a contract that contains a plan not to act on suicidal
thoughts if they happen again. The plan should contain the names and numbers of people the patient can call if
suicidal ideations occur.5
Depression is painful and debilitating, and sometimes a depressed person really wishes to kill himself or herself.
However, most suicidal people are ambivalent, and being able to discuss their feelings may give them the time
needed to identify a coping mechanism for current stressors. Asking about suicidal thoughts does not increase
suicidal behavior. Promptly share any concerns you have about a person's suicide ideation with a mental health
professional.
Suicide is
preventable, but it
is the 10th leading
cause of death in
the United States
and the 2nd
leading cause
among those ages
15 to 34 years.
Between 20% and
33% of suicide
victims test
positive for
alcohol,
antidepressants,
or opiates.
Although females
are more likely to
have suicidal
thoughts, males
are 4 times more
likely to commit
suicide (most
often by
firearms).4
A precise suicide
plan to take place
in the next 24 to 48
hours using a
148
lethal method
constitutes high
risk. Important
clues and warning
signs of suicide:
Prior suicide attempts
Depression,
hopelessness
Firearms in the home
Family history of
suicide
Incarceration
Family violence,
including physical or
sexual abuse
Self-mutilation
Anorexia
Verbal suicide
messages (defeat,
failure,
worthlessness, loss,
giving up, desire to
kill self)
Death themes in art,
jokes, writing,
behaviors
Saying goodbye
(giving away prized
possessions)
Judgment
A person exercises judgment when he or she can compare and evaluate the alternatives in a situation and reach an
appropriate course of action. You are interested in the person's judgment about daily or long-term life goals, the
likelihood of acting in response to delusions or hallucinations, and the capacity for violent or suicidal behavior.
To assess judgment in the context of the interview, note what the person says about job plans, social or family
obligations, and plans for the future. Job and future plans should be realistic, considering the person's health
situation. In addition, ask the person to describe the rationale for personal health care and how he or she decided
whether to comply with prescribed health regimens. The person's actions and decisions should be realistic.
Impaired judgment
(unrealistic or
impulsive decisions,
wish fulfillment)
occurs with
developmental
disability, emotional
dysfunction,
schizophrenia, and
organic brain disease.
Supplemental Mental Status Examination
The Mini-Mental State Examination (MMSE) is a test of the cognitive functions of the mental status examination
(memory, orientation to time and place, naming, reading, copying or visuospatial orientation, writing, and the
ability to follow a three-stage command). It requires paper and pencil; the person must be able to write and have no
vision impairment. The MMSE is copyrighted and available for purchase from Psychological Assessment Resources,
Inc.
The MMSE is used
with caution in people
with low education,
who may have
problems copying
intersecting
pentagons, spelling
“world” backward, or
performing serial 7s.
The MMSE also lacks
sensitivity for mild
cognitive
impairment.6
The MMSE is quick and easy, includes a standard set of only 11 questions, and requires only 5 to 10 minutes to
administer. It is useful for both initial and serial measurement; therefore you can demonstrate worsening or
improvement of cognition over time and with treatment. It concentrates only on cognitive functioning, not on mood,
thought processes, or executive function. It is a valid detector of organic disease but lacks sensitivity for mild
cognitive impairment.
The maximum score on the test is 30; people with normal mental status average 27. Scores between 24 and 30
indicate no cognitive impairment.
Scores that occur with
dementia and
delirium are classified
as follows: 18-23 =
mild cognitive
impairment; 0-17 =
severe cognitive
impairment.
An alternate assessment tool, the Montreal Cognitive Assessment (MoCA), is available to assess mental status. The
MoCA examines more cognitive domains than the MMSE, is more sensitive to mild cognitive impairment, and can
be obtained free of charge.6 The MoCA includes items that measure visuo-constructive ability, language function,
memory, auditory attention, conceptual thinking, working memory and calculations, as well as speech/language.
The MoCA takes approximately 10 minutes to administer. The total score is 30 and a score of ≥26 is considered
normal. One point is added to the score of any person with fewer than 12 years of formal education.
Any score <26 is
indicative of mild
cognitive impairment.
DEVELOPMENTAL COMPETENCE
Infants and Children
The mental status assessment of infants and children covers behavioral, cognitive, and psychosocial
development and examines how the child is coping with his or her environment. Essentially you follow the
same A-B-C-T guidelines as for the adult, with special consideration for developmental milestones. Your best
Denver II scoring
avoids diagnostic
labeling (e.g.,
149
examination “technique” arises from thorough knowledge of developmental milestones. Abnormalities are often
problems of omission; the child does not achieve a milestone you would expect.
The parent's health history, especially the sections on the developmental history and personal history, yields
most of the mental status data.
In addition, the Denver II screening test gives you a chance to interact directly with the young child to assess
mental status. The Denver II is designed to detect developmental delays in infants and preschoolers within four
functions: gross motor, language, fine motor–adaptive, and personal-social skills. For mental status assessment,
the Denver II helps identify young children who may be slow in development in behavioral, language, cognitive,
and psychosocial areas. The test has 125 items arranged in chronologic order and displayed in groupings
corresponding to recommended ages for health-maintenance visits.
developmental
disability,
language
disorder). Instead
the child's
performance is
scored either
“normal,”
“abnormal,” or
“questionable.”
See Table 5.10,
Childhood Mental
Disorders, p. 82.
In some settings, a caregiver-completed instrument may be used to assess developmental milestones. Caregiver-
completed instruments include the Ages and Stages Questionnaire, the Modified Checklist for Autism in Toddlers
Revised, or the Parents' Evaluation of Developmental Status. The tools ask about the child's development in a variety
of areas and ask parents to identify any concerns. No one tool is recommended above others, but the American
Academy of Pediatrics does recommend routine developmental screening for all infants and children.12
As you talk to the parent, listen for signs of irritability in the child (i.e., overreacting to a stimulus, leading to
excitability or anger). This is expected in a child who is ill with a medical condition. Some irritability also is expected
in some developmental stages (i.e., age 2 years and in adolescence as the teen struggles for independence).
In children and teens,
note irritability that is
more constant or
obstructs performance
in school or in social
and family
relationships. Note
that irritability is a
common sign in
mental health
disorders in
childhood: anxiety,
depression, ADHD,
oppositional defiant
disorder (ODD), and
autism spectrum
disorders.8
For the adolescent, follow the same A-B-C-T guidelines as described for the adult. Keep your beginning questions
open ended (i.e., “How are things at school? At home? How about friends—anyone close?”). Then you can ask more
specific questions: “Do you feel any extra stress or anxiety at school? At home? With friends? How about your
parents—do they think you act worried or anxious?” Review Fig. 4.16 for more information on interviewing
adolescents.
Anxiety disorders are
common in the teen
years and are
associated with GAD,
social phobia, ADHD,
PTSD (see Table 5.4, p.
78). In addition,
anxiety and
depression are seen
together, two sides of
a double-edged
sword.
The Aging Adult
It is important to conduct even a brief examination of all older people admitted to the hospital. Confusion is
common in aging people and is easily misdiagnosed. Delirium is present in 8% to 17% of elderly people who
present to the emergency department (ED) and 40% of nursing home residents who present to the ED. Up to
50% of hospitalized elderly patients experience delirium.9 Delirium can have deleterious effects after the acute
episode, including increased risk of mortality, prolonged cognitive impairment (lasting up to a year), and
physical impairment.9
Overall prevalence of dementia in those 65 years and older dropped significantly from 11.6% in 2000 to 8.8% in
2012.11 Declining prevalence signals improved brain health in the elderly population. Although all factors
related to the improvement are unknown, better control of cardiovascular risk factors and higher educational
attainment are two contributing factors.11,18 While the overall prevalence of dementia is declining, the burden of
disease will increase as the baby boomer generation ages and life expectancy increases.18
Delirium is an
acute confusional
change or loss of
consciousness and
perceptual
disturbance; it
may accompany
acute illness (e.g.,
pneumonia,
alcohol/drug
intoxication), and
it is usually
resolved when the
underlying cause
is treated.
In contrast,
dementia is a
gradual,
progressive
process, causing
decreased
cognitive function
even though the
person is fully
conscious and
awake; it is not
reversible.
Alzheimer disease
accounts for about
two-thirds of
cases of dementia
in older adults
(see Table 5.5).
Dementia is not
150
part of normal
aging. Risk factors
for dementia
include racial and
ethnic groups
other than
Caucasians,
advanced age,
women, singles,
living alone, lower
educational
attainment, and
lower income.
Check sensory status before assessing any aspect of mental status. Vision and hearing changes caused by aging may
alter alertness and leave the person looking confused. When older people cannot hear your questions, they cannot
accurately complete cognitive screening examinations.
Follow the same A-B-C-T guidelines as described for the younger adult with the following additional considerations.
Behavior
Level of Consciousness.
In a hospital or extended-care setting, the Glasgow Coma Scale (see Chapter 24) is a quantitative tool that is
useful in testing consciousness. It gives a numeric value to the person's response in eye opening, best verbal
response, and best motor response. This system avoids ambiguity when numerous examiners care for the same
person.
Cognitive Functions
Orientation.
Many aging persons experience social isolation, loss of structure without a job, a change in residence, or some
short-term memory loss. These factors affect orientation, and this person may not provide the precise date or
complete name of the agency. You may consider aging persons oriented if they know generally where they are
and the present period (i.e., consider them oriented to time if the year and month are stated correctly).
Orientation to place is accepted with the correct identification of the type of setting (e.g., the hospital) and the
name of the town.
New Learning
In people of normal cognitive function, an age-related decline occurs in performance in the Four Unrelated Words
Test described on p. 67. People in their 70s average two of four words recalled over 5 minutes. They will improve
their performance at 10 and 30 minutes after being reminded by verbal cues (e.g., “one word was a color; a common
flower in Holland is ____________”).
People with
Alzheimer dementia
do not improve their
performance on
subsequent trials.
Supplemental Mental Status Examination
The Mini-Cog.
The Mini-Cog is a reliable, quick, and easily available instrument to screen for cognitive impairment in
otherwise healthy older adults (Fig. 5.4).23 It can be used with various cultural groups and literacy levels and
takes only 3 to 5 minutes to administer. The Mini-Cog is not influenced by educational level or health literacy of
the patient and can be used in a variety of settings, including the hospital.14
5.4 Clock drawing for the Mini-Cog.
The Mini-Cog consists of a 3-item recall test and a clock-drawing test. Begin by asking the older adult to listen
carefully to, remember, and then repeat three words that you will say. Make sure that the person can hear you and
that no distracting noises are present. Keep the words short and unrelated: “Listen carefully. I am going to say three
words. Say them back after I stop. Ready? Cup (pause), train (pause), blue. Now repeat those words to me. Good.” Next give
the adult a blank sheet of paper, saying, “Now I want you to draw the face of a clock and write the numbers on the clock face.
That's fine. Next I want you to draw the hands of the clock so it shows the time of 11:10.” “Remember the three words I told you
earlier? Now I want you to repeat them.”
A score of 0-5 is
awarded based on
the following
criteria: 1 point is
awarded for each
word recalled
(total of 3 points)
and 2 points are
awarded for a
151
normal clock. A
normal clock
includes all
numbers in the
correct order with
proper placement,
and 2 hands
pointing at 11 and
2. Hand length is
not scored.
A score of <3 is
indicative of
dementia
although some
cognitive
impairment
cannot be ruled
out with scores of
3, 4, or 5.13
The Mini-Cog tests the person's executive function, including the ability to plan, manage time, organize activities,
and manage working memory.13 A person with no cognitive impairment or dementia can recall all three words and
draw a complete, round, closed clock circle, with all face numbers present and in correct position and sequence and
with the hour and minute hands indicating the time you requested.
152
Documentation And Critical Thinking
Sample Charting
Appearance: Person's posture is erect, with no involuntary body movements. Dress and
grooming are appropriate for season and setting.
Behavior: Person is alert, with appropriate facial expression and fluent, understandable
speech. Affect and verbal responses are appropriate.
Cognitive functions: Oriented to time, person, place. Able to attend cooperatively with
examiner. Recent and remote memory intact. Can recall four unrelated words at 5-, 10-, and
30-minute testing intervals. Future plans include returning home and to local university
once individual therapy is established and medication is adjusted.
Thought process: Perceptions and thought processes are logical and coherent. No suicidal
ideation.
Score on Mini-Mental State Examination is 28.
Clinical Case Study 1
L.P. is a 79-year-old married woman, with a recent hospitalization for evaluation of increasing
memory loss, confusion, and socially inappropriate behavior. Her family reports that L.P.'s hygiene
and grooming have decreased; she eats very little and has lost weight, does not sleep through the
night, has angry emotional outbursts that are unlike her former demeanor, and does not recognize
her younger grandchildren. Her husband reports that she has drifted away from the stove while
cooking, allowing food to burn on the stovetop. He has found her wandering through the house in
the middle of the night, unsure of where she was. She used to “talk on the phone for hours,” but
now he has to push her into conversations. During this hospitalization L.P. has undergone a series
of medical tests, including a negative lumbar puncture test, normal electroencephalogram (EEG),
and a negative head computed tomography (CT) scan. Her physician now suggests a diagnosis of
Alzheimer dementia.
Appearance: Sitting quietly, somewhat slumped, picking on loose threads on her dress.
Hooded, zippered sweatshirt top worn over dress. Hair is gathered in loose ponytail with
stray wisps. No makeup.
Behavior: Awake and gazing at hands and lap. Expression is flat and vacant. Will make eye
contact when called by name, although gaze quickly shifts back to lap. Speech is a bit slow
but articulate; some trouble with word choice.
Cognitive function: Oriented to person and place. Can state the season but not the day of the
week or the year. Is not able to repeat the correct sequence of complex directions involving
lifting and shifting glass of water to the other hand. Scores a one-word recall on the Four
Unrelated Words Test. Cannot tell examiner how she would plan a grocery shopping trip.
Thought process: Experiences blocking in train of thought. Thought content is logical. Acts
cranky and suspicious with family members. No suicidal ideation.
Mini-Mental State Examination score is 17 and shows poor recall ability and marked difficulty
with serial 7s.
Assessment
Chronic confusion
Impaired social interaction
Impaired memory
Wandering
153
Clinical Case Study 2
I.E. is a 64-year-old man with chronic hypertension who was admitted to the hospital 3 days ago
with acute coronary syndrome. He underwent coronary artery bypass surgery 2 days ago and has
been in the ICU. His preoperative score on the Mini-Mental State Examination was 26.
Appearance: Moves restlessly in hospital bed. Calms during family visits.
Behavior: Restlessness increases during evening and night hours. Speech is incoherent and
rambling.
Cognitive function: Oriented to own name but not to time, place. No memory of surgery or
recent events. Wants to leave and “get back to the plant.” Verbalizes that nurses are keeping
him here against his will. “They are in it together.” Unable to recall words on Four
Unrelated Words Test. Believes “little bugs” are crawling up wall by his bed.
Thought process: Thought content is illogical. Experiences hallucinations. Appears angry and
suspicious with nurses.
Assessment
Postoperative delirium
Acute confusion
Impaired memory
154
Abnormal Findings
TABLE 5.1
Levels of Consciousness
These terms are commonly used in clinical practice. They spread over a continuum from full alertness to deep coma. The terms are
qualitative and therefore are not always reliable. (A quantitative tool that serves the same purpose and eliminates ambiguity is the Glasgow
Coma Scale in Chapter 24.) However, these terms are widely accepted and are useful as long as all co-workers agree on definitions and are
consistent in their application. To increase clarity when using these terms, record also:
1. The level of stimulus used, ranging progressively from:
a. Name called in normal tone of voice
b. Name called in loud voice
c. Light touch on person's arm
d. Vigorous shake of shoulder
e. Painful stimuli
2. The person's response
a. Amount and quality of movement
b. Presence and coherence of speech
c. Opening of eyes and making eye contact
3. What the person does on cessation of your stimulus
(1) Alert
Awake or readily aroused; oriented, fully aware of external and internal stimuli and responds appropriately; conducts meaningful
interpersonal interactions.
(2) Lethargic (or Somnolent)
Not fully alert; drifts off to sleep when not stimulated; can be aroused to name when called in normal voice but looks drowsy; responds
appropriately to questions or commands but thinking seems slow and fuzzy; inattentive; loses train of thought; spontaneous movements are
decreased.
(3) Obtunded
(Transitional state between lethargy and stupor; some sources omit this level.)
Sleeps most of time; difficult to arouse—needs loud shout or vigorous shake; acts confused when is aroused; converses in monosyllables;
speech may be mumbled and incoherent; requires constant stimulation for even marginal cooperation.
(4) Stupor or Semi-Coma
Spontaneously unconscious; responds only to persistent and vigorous shake or pain; has appropriate motor response (i.e., withdraws hand
to avoid pain); otherwise can only groan, mumble, or move restlessly; reflex activity persists.
(5) Coma
Completely unconscious; no response to pain or any external or internal stimuli (e.g., when suctioned, does not try to push the catheter
away); light coma has some reflex activity but no purposeful movement; deep coma has no motor response.
Delirium (Acute Confusional State)
Clouding of consciousness (dulled cognition, impaired alertness); inattentive; incoherent conversation; impaired recent memory and
confabulatory for recent events; often agitated and having visual hallucinations; disoriented, with confusion worse at night when
environmental stimuli are decreased.
Adapted from Strub, R. L., & Black, F. W. (2000). Mental status examination in neurology. (4th ed.). Philadelphia: Davis, with
permission.
TABLE 5.2
Speech Disorders
Condition Disorder of Description
Dysphonia Voice Difficulty or discomfort in talking, with abnormal pitch or volume, caused by laryngeal
disease. Voice sounds hoarse or whispered, but articulation and language are intact.
Dysarthria Articulation Distorted speech sounds; speech may sound unintelligible; basic language (word choice,
grammar, comprehension) intact.
Aphasia Language comprehension and
production secondary to brain
damage
True language disturbance; defect in word choice and grammar or defect in
comprehension; defect is in higher integrative language processing.
Types of Aphasia
An earlier dichotomy classified aphasias as expressive (difficulty producing language) or receptive (difficulty understanding language).
Because all people with aphasia have some difficulty with expression, beginning examiners tend to classify them all as expressive. The
following system is more descriptive.
Condition Description
Global
aphasia
The most common and severe form. Spontaneous speech is absent or reduced to a few stereotyped words or sounds.
Comprehension is absent or reduced to only the person's own name and a few select words. Repetition, reading, and writing
are severely impaired. Prognosis for language recovery is poor. Caused by a large lesion that damages most of combined
anterior and posterior language areas.
Broca
aphasia
Expressive aphasia. The person can understand language but cannot express himself or herself using language. This is
characterized by nonfluent, dysarthric, and effortful speech. The speech is mostly nouns and verbs (high-content words) with
few grammatic fillers, termed agrammatic or telegraphic speech. Repetition and reading aloud are severely impaired. Auditory
and reading comprehensions are surprisingly intact. Lesion is in anterior language area called the motor speech cortex or Broca
area.
Wernicke
aphasia
Receptive aphasia. The linguistic opposite of Broca aphasia. The person can hear sounds and words but cannot relate them to
previous experiences. Speech is fluent, effortless, and well articulated but has many paraphasias (word substitutions that are
155
malformed or wrong) and neologisms (made-up words) and often lacks substantive words. Speech can be totally
incomprehensible. Often there is a great urge to speak. Repetition, reading, and writing also are impaired. Lesion is in posterior
language area called the association auditory cortex or Wernicke area.
(For a discussion of other types of aphasia [e.g., conduction, anomic, transcortical] and speech disorders, please consult a neurology text.)
TABLE 5.3
Mood and Affect Abnormalities
Type of Mood or
Affect Definition Clinical Example
Flat affect (blunted
affect)
Lack of emotional response; no expression of feelings; voice monotonous
and face immobile
Topic varies, expression does not
Depression Sad, gloomy, dejected; symptoms may occur with rainy weather, after a
holiday, or with an illness; if the situation is temporary, symptoms fade
quickly
“I don't enjoy anything anymore.”
Depersonalization
(lack of ego
boundaries)
Loss of identity, feels estranged, perplexed about own identity and
meaning of existence
“I don't feel real.” “I feel like I'm not really
here.”
Elation Joy and optimism, overconfidence, increased motor activity; not
necessarily pathologic
“I'm feeling very happy.”
Can be a pathologic sign of mania.
Euphoria Excessive well-being; unusually cheerful or elated, which is
inappropriate considering physical and mental condition; implies a
pathologic mood
“I'm high.” “I feel like I'm flying.” “I feel on
top of the world.”
Anxiety Worried, uneasy, apprehensive from the anticipation of a danger whose
source is unknown
“I feel nervous and high-strung.” “I worry
all the time.” “I can't seem to make up my
mind.”
Fear Worried, uneasy, apprehensive; external danger is known and identified Fear of flying in airplanes
Irritability Annoyed, easily provoked, impatient Person internalizes a feeling of tension, and
a seemingly mild stimulus “sets him (or her)
off”
Rage Furious, loss of control Person has expressed violent behavior
toward self or others
Ambivalence The existence of opposing emotions toward an idea, object, person A person feels love and hate toward another
at the same time
Lability Rapid shift of emotions Person expresses euphoric, tearful, angry
feelings in rapid succession
Inappropriate affect Affect clearly discordant with content of person's speech Laughs while discussing admission for liver
biopsy
TABLE 5.4
Anxiety Disorders
Panic Attack Agoraphobia
A defined period of intense fear, anxiety, and dread accompanied
by signs of dyspnea, choking, chest pain, increased heart rate,
palpitations, nausea, and sweating. Also has fear of going crazy,
dying, or impending doom. Sudden onset, lasts about 10 minutes,
then subsides.
An irrational fear of being out in the open or in a place from which
escape is difficult (airport or airplane, car or bus, elevator, bridge). Fear
is so intense that these places are avoided and person is reluctant to
leave a safe place (home).
Specific Phobia Social Anxiety Disorder (Social Phobia)
A pattern of debilitating fear when faced with a particular object or
situation (e.g., dogs, spiders, thunder or storms, enclosed spaces,
heights, blood). Person knows it is irrational yet studiously avoids
the feared object, thus becoming restricted in social or occupational
activities.
A persistent and irrational fear of being in social situations. Person
anticipates being judged or criticized, feeling or looking foolish, feeling
embarrassment, being unable to answer questions, or being unable to
remember the lines or notes. Person studiously avoids social situations
or endures them with intense anxiety.
Generalized Anxiety Disorder (GAD) Obsessive-Compulsive Disorder (OCD)
A pattern of excessive worrying and morbid fear about anticipated
“disasters” in the job, personal relationships, health, or finances.
Characterized by restlessness, muscle tension, diarrhea,
palpitations, tachypnea, hypervigilance, fatigue, or sleep
disturbance. Person devotes much time to preparing for anticipated
catastrophe, has difficulty making decisions, and practices
avoidance.
A pattern of recurrent obsessions (intrusive, uncontrollable thoughts)
and compulsions (repetitive ritualistic actions) done to decrease
anxiety and prevent a catastrophe (e.g., contamination [fear of germs],
violence, perfectionism, and superstitions). Intrusive thoughts and
actions are time consuming, interfere with daily activities, and make
the person feel humiliated or ashamed for giving in to them.
Posttraumatic Stress Disorder (PTSD)
This follows a traumatic event outside the range of usual human experience involving actual or threatened death (e.g., military combat,
natural disaster [flood, tornado, earthquake], plane or train accident, violence [mugging, rape, bombing]). The person relives the trauma
many times, intrusively and unwillingly. The same feelings of helplessness, fear, or horror recur. Avoidance of any trigger associated with
the trauma occurs, and the person has hypervigilance, sleep problems, and difficulty concentrating, leading to feelings of being permanently
damaged.
Adapted from Halter, M. J. (2017). Varcarolis' foundations of psychiatric mental health nursing. (8th ed.). St. Louis: Elsevier; and
Stedman's medical dictionary. (28th ed.). (2005). Philadelphia: Lippincott Williams & Wilkins.
TABLE 5.5
156
Delirium, Dementia, and Depression
Delirium is an acute confusional state, potentially preventable in hospitalized persons. (See Table 5.1.) Characterized by disorientation,
disordered thinking and perceptions (illusions and hallucinations), defective memory, agitation, inattention.
Dementia is a chronic progressive loss of cognitive and intellectual functions, although perception and consciousness are intact.
Characterized by disorientation, impaired judgment, memory loss. (See Table 24.1, 10 Warning Signs of Alzheimer Disease).
Depression is a long-term depressed mood (≥2 weeks) with lack of pleasure; disturbed sleep and appetite; feelings of hopelessness, guilt,
worthlessness, sadness, loneliness, and despair; suicide ideation.
See the following comparisons.
Delirium Dementia Depression
Onset Sudden, over hours to days Slowly, over months May be gradual, with
exacerbation during crisis
or stress
Cause or
contributing
factors
Hypoglycemia, fever, dehydration, hypotension; infection,
other conditions that disrupt body homeostasis; adverse
drug reaction; head injury; change in environment (e.g.,
hospitalization); pain; emotional stress; substance abuse
Alzheimer disease, vascular
disease, human
immunodeficiency virus infection,
neurologic disease, chronic
alcoholism, head trauma
Lifelong history, losses,
loneliness, crises, declining
health, medical conditions
Cognition Impaired memory, judgment, calculations, attention span;
can fluctuate through the day
Impaired memory, judgment,
calculations, attention span,
abstract thinking; agnosia
Difficulty concentrating,
forgetfulness, inattention
Level of
consciousness
Altered Not altered Not altered
Activity level Can be increased or reduced; restlessness; behaviors may
worsen in evening (sundowning); sleep/wake cycle may be
reversed
Not altered; behaviors may
worsen in evening (sundowning)
Usually decreased;
lethargy, fatigue, lack of
motivation; may sleep
poorly and awaken in
early morning
Emotional
state
Rapid swings; can be fearful, anxious, suspicious,
aggressive, have hallucinations and/or delusions
Flat; agitation Extreme sadness, apathy,
irritability, anxiety,
paranoid ideation
Speech and
language
Rapid, inappropriate, incoherent, rambling Incoherent, slow (sometimes due
to effort to find the right word),
inappropriate, rambling,
repetitious
Slow, flat, low
Prognosis Reversible with proper and timely treatment Not reversible; progressive Reversible with proper
and timely treatment
From Halter, M. J. (2017). Varcarolis’ foundations of psychiatric mental health nursing (8th ed.). St. Louis: Elsevier.
157
Abnormal Findings for Advanced Practice
TABLE 5.6
Thought Process Abnormalities
Type of Process Definition Clinical Example
Blocking Sudden interruption in train of thought, unable to
complete sentence, seems related to strong emotion.
“Forgot what I was going to say.”
Confabulation Fabricates events to fill in memory gaps. Gives detailed description of his long walk around the hospital
although you know Mr. J. remained in his room all afternoon.
Neologism Coining a new word; invented word has no real
meaning except for the person; may condense several
words.
“I'll have to turn on my thinkilator.”
Circumlocution Round-about expression, substituting a phrase when
unable to think of name of object.
Says “the thing you open the door with” instead of “key.”
Circumstantiality Talks with excessive and unnecessary detail, delays
reaching point; sentences have a meaningful
connection but are irrelevant (this occurs normally in
some people).
“When was my surgery? Well I was 28, I was living with my
aunt, she's the one with psoriasis, she had it bad that year
because of the heat, the heat was worse than it was the summer
of '92. …”
Loosening
associations
Shifting from one topic to an unrelated topic; person
seems unaware that topics are unconnected.
“My boss is angry with me, and it wasn't even my fault. (pause) I
saw that movie too, Lassie. I felt really bad about it. But she kept
trying to land the airplane and she never knew what was going
on.”
Flight of ideas Abrupt change, rapid skipping from topic to topic,
practically continuous flow of accelerated speech;
topics usually have recognizable associations or are
plays on words.
“Take this pill? The pill is blue. I feel blue. (sings) She wore blue
velvet.”
Word salad Incoherent mixture of words, phrases, and sentences;
illogical, disconnected, includes neologisms.
“Beauty, red-based five, pigeon, the street corner, sort of.”
Perseveration Persistent repeating of verbal or motor response, even
with varied stimuli.
“I'm going to lock the door, lock the door. I walk every day, and
I lock the door. I usually take the dog, and I lock the door.”
Echolalia Imitation, repeats others' words or phrases, often with
a mumbling, mocking, or mechanical tone
Nurse: “I want you to take your pill.”
Patient (mocking): “Take your pill. Take your pill.”
Clanging Word choice based on sound, not meaning; includes
nonsense rhymes and puns.
“My feet are cold. Cold, bold, told. The bell tolled for me.”
TABLE 5.7
Thought Content Abnormalities
Type of Content Definition Clinical Example
Phobia Strong, persistent, irrational fear of an object or situation; feels
driven to avoid it
Cats, dogs, heights, enclosed spaces
Hypochondriasis Morbid worrying about his or her own health; feels sick with
no actual basis for that assumption
Preoccupied with the fear of having cancer; any
symptom or physical sign means cancer
Obsession Unwanted, persistent thoughts or impulses; logic will not
purge them from consciousness; experienced as intrusive and
senseless
Violence (parent having repeated impulse to kill a loved
child); contamination (becoming infected by shaking
hands)
Compulsion Unwanted repetitive, purposeful act; driven to do it; behavior
thought to neutralize or prevent discomfort or some dreaded
event
Handwashing, counting, checking and rechecking,
touching
Delusions Firm, fixed, false beliefs; irrational; person clings to delusion
despite objective evidence to contrary
Grandiose—Person believes that he or she is God;
famous, historical, or sports figure; or other well-
known person
Persecution—“They're out to get me.”
TABLE 5.8
Perception Abnormalities
Type of
Perception Definition Clinical Example
Hallucination Sensory perceptions for which there are no external stimuli; may strike
any sense: visual, auditory, tactile, olfactory, gustatory
Visual: seeing an image (ghost) of a person who is
not there; auditory: hearing voices or music
Illusion Misperception of an actual existing stimulus, by any sense Folds of bedsheets appear to be animated
TABLE 5.9
158
Characteristics of Eating Problems
Anorexia Nervosa Bulimia Nervosa Binge Eating
• Intense fear of weight gain
• Distorted body image
• Restricted calories with significantly low
body mass index
• Subtypes:
• Restricting (no consistent bulimic
features)
• Binge eating/purging type (primarily
restriction, some bulimic behaviors)
• Recurrent episodes of uncontrollable
bingeing
• Inappropriate compensatory behaviors:
vomiting, laxatives, diuretics, or exercise
• Self-image largely influenced by body image
• Recurrent episodes of uncontrollable
bingeing without compensatory behaviors
• Bingeing episodes induce guilt, depression,
embarrassment, or disgust
From Halter, M. J. (2017). Varcarolis’ foundations of psychiatric mental health nursing (8th ed.). St. Louis: Elsevier.
TABLE 5.10
Childhood Mental Disorders
Attention-Deficit/Hyperactivity Disorder (ADHD) Oppositional Defiant Disorder (ODD)
A common behavioral disorder with inappropriate
inattention (short attention span, unable to complete tasks
or follow directions, easily distracted), impulsiveness, and
hyperactivity (restlessness and fidgeting, excess talking).
Present in two settings, home and school. Nearly 12% of
adolescents ages 12-17 and 9.5% of children ages 6-11
have ADHD. The highest prevalence is in non-Hispanic
white males.16
A disruptive set of behaviors characterized by negative, aggressive, angry, and
irritable mood. Children with ODD lose their temper, argue with adults, refuse
to obey adults' requests or rules, deliberately annoy others, and blame their
actions on others. They may be spiteful, vindictive, or malicious. Because they
violate social norms, presence in school is difficult. It is also hard to make friends
or to fit well in the family.
Autism Spectrum Disorder Eating Disorder
A complex neurologic and biological developmental
disorder characterized by problems in social interactions
and verbal and nonverbal communication. Dysfunctions
range from mild to severe and include problems making
and maintaining friends, strict adherence to rituals or
routines, resistance to change, repetitive speech, poor eye
contact, and motor mannerisms. Autism has a genetic
component, appears in early childhood (by 2 or 3 years),
is 4 times more common in boys than girls, and is not
affected by race, family income, or educational level.
A group of serious and complex psychological disorders affecting primarily
adolescents. (1) Anorexia nervosa presents as a severely low body weight for
height (low body mass index) and an intense fear of gaining weight. The person
may eat very little food or binge and then purge food by vomiting. (2) Bulimia
nervosa is the hallmark of a young person who binge eats and then compensates
with self-induced vomiting, misuse of laxatives or diuretics, fasting, or excessive
exercise. Both disorders leave the person severely underweight and at risk for
electrolyte disturbances and other medical comorbidities (see Table 5.9). (3)
People with binge-eating disorder use excessive food for comfort or to relieve
stress and then feel extreme remorse. This leads to obesity.
Adapted from Halter, M. J. (2017). Varcarolis' foundations of psychiatric mental health nursing (8th ed.). St. Louis: Elsevier; and
Stedman's medical dictionary. (28th ed.). (2005). Philadelphia: Lippincott Williams & Wilkins.
159
Summary Checklist: Mental Status Assessment
1. Appearance
Posture
Body movements
Dress
Grooming and hygiene
Pupils
2. Behavior
Level of consciousness
Facial expression
Speech (quality, pace, articulation, word choice)
Mood and affect
3. Cognitive function
Orientation
Attention span
Recent and remote memory
New learning—the Four Unrelated Words Test
Judgment
4. Thought process
Thought process
Thought content
Perceptions
Screen for suicidal thoughts
5. Perform the Mini-Mental State Examination, MoCA, or the Mini-Cog
160
References
1. American Psychiatric Association. Diagnostic and statistical manual of mental
disorders. 5th ed. The Association: Washington, DC; 2013.
2. Reference deleted in proofs.
3. Centers for Disease Control and Prevention. Children's mental health: Basics.
https://www.cdc.gov/childrensmentalhealth/basics.html; 2017.
4. Centers for Disease Control (CDC). Suicide data sheet-facts at a glance.
https://www.cdc.gov/violenceprevention/pdf/suicide-datasheet-a ; 2015.
5. Diggle-Fox BS. Assessing suicide risk in older adults. Nurse Pract. 2016;41(10):28–
35.
6. Finney GR, Minager A, Heilman KM. Assessment of mental status. Neurol Clin.
2016;34:1–16.
7. Fontanella CA, et al. Widening rural-urban disparities in youth suicides, United
States, 1996-2010. JAMA Pediatr. 2015;169:466–473.
8. Halter MJ. Varcarolis’ foundations of psychiatric mental health nursing. 8th ed.
Elsevier: St. Louis; 2017.
9. Inouye SK, Westendorp RGJ, Saczynski JS. Delirium in elderly people. Lancet.
2014;383:911–922.
10. Lakkis NA, Mahmassani DM. Screening instruments for depression in primary
care: A concise review for clinicians. Postgrad Med. 2015;127(1):99–106.
11. Langa KM, Larson EB, Crimmins EM. A comparison of the prevalence of
dementia in the United States in 2000 and 2012. JAMA Intern Med. 2017;177:51–58.
12. Lipkin PH, et al. Trends in standardized developmental screening: Results from
national surveys of pediatricians, 2002-2016. Pediatric Academic Societies Annual
Meeting. 2017.
13. Mini-Cog screening for cognitive impairment in older adults. mini-cog.com.
14. Mion LC, Sandhu SK. Screening for dementia in hospitalized older adults: Try the
Mini-Cog. Geriatr Nurs (Minneap). 2014;35(4):313–315.
15. National Institute of Mental Health. Statistics.
https://www.nimh.nih.gov/health/statistics/index.shtml.
16. Pastor PN. QuickStats: Percentage of Children and Adolescents Aged 5–17 Years
with Diagnosed Attention-Deficit/Hyperactivity Disorder (ADHD), by Race and
Hispanic Ethnicity — National Health Interview Survey, United States, 1997–
2014. MMWR Morb Mortal Wkly Rep. 2015;64:925.
17. Plummer F, et al. Screening for anxiety disorders with the GAD-7 and GAD-2: A
systematic review and diagnostic metaanalysis. Gen Hosp Psychiatry. 2016;39:24–
31.
18. Satizabal CL, et al. Incidence of dementia over three decades in the Framingham
Heart Study. N Engl J Med. 2016;374:523–532.
19. Savoy M, O'Gurek D. Screening your adult patients for depression. Fam Pract
Manag. 2016;23(2):16–20.
20. Schaie KW, Willis SL. Handbook of the psychology of aging. 8th ed. Academic Press,
Elsevier: London; 2016.
21. Reference deleted in proofs.
22. Strub RL, Black FW. Mental status examination in neurology. 4th ed. Davis:
Philadelphia; 2000.
23. Tsoi KF, et al. Cognitive tests to detect dementia: A systematic review and meta-
analysis. JAMA Intern Med. 2015;175(9):1450–1458.
24. Tyler ET, Hulkower RL, Kaminski JW. Behavioral health integration in pediatric
primary care: Considerations and opportunities for policymakers, planners, and
161
https://www.cdc.gov/childrensmentalhealth/basics.html
https://www.cdc.gov/violenceprevention/pdf/suicide-datasheet-a
http://mini-cog.com
https://www.nimh.nih.gov/health/statistics/index.shtml
providers. https://www.milbank.org/wp-
content/uploads/2017/03/MMF_BHI_Executive-Summary-FINAL ; 2017.
25. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global
disease burden implications. JAMA Psychiatry. 2015;72(4):334.
26. World Health Organization. Mental disorders.
http://www.who.int/mediacentre/factsheets/fs396/en/; 2017.
27. World Health Organization (WHO). Mental health: a state of well-being.
http://www.who.int/features/mental_health/en/index.html; December 2013.
162
https://www.milbank.org/wp-content/uploads/2017/03/MMF_BHI_Executive-Summary-FINAL
http://www.who.int/mediacentre/factsheets/fs396/en/
http://www.who.int/features/mental_health/en/index.html
C H A P T E R 6
163
Substance Use Assessment
Alcohol Use and Abuse
Over half (56%) of Americans ages 18 and older report being current alcohol drinkers.25 For adults
ages 18 to 25 years, almost 40% report binge drinking ≥5 drinks/occasion, and almost 11% report
heavy alcohol use (binge drinking on ≥5 days in past 30 days)25 (Fig. 6.1). Thus alcohol is the most
used and abused psychoactive drug. People like to drink!
6.1
In the 11 years between 2001-2002 and 2012-2013, the 12-month alcohol use by adults ages 18
years and older increased by 11.2%, high-risk drinking increased by almost 30%, and diagnosed
alcohol use disorders (AUD) increased by almost 50%.13 The highest increases are found among
women, older adults, racial/ethnic minorities, and those with lower family income and educational
level.13 Most adults are able to drink low-to-moderate amounts of alcohol safely (≤2 drinks per day
for men and ≤1 drink/day for women). But given the high rates of alcohol use, you will encounter
many patients in the hospital and primary care setting with an alcohol use disorder.
Morbidity and mortality data reflect the adverse consequences of alcohol use. An estimated
88,000 people die annually from alcohol-related causes; thus alcohol use is the 4th leading
preventable cause of death in the United States.19 Alcohol-related driving deaths account for 31% of
overall driving fatalities.19 Emergency departments see over 500,000 visits each year for drugs with
alcohol. For alcohol alone, it is over 800 ED visits for every 100,000 people under age 21 years.14 A
surprisingly high number of prescription medications—591, or 45%—are classified as alcohol
interactive (AI).3 This means that their combination with alcohol changes the metabolism of the
alcohol or the activity or metabolism of the medication, with a risk of adverse drug reactions
(ADRs). This is especially significant with drugs that depress the central nervous system (CNS)
(e.g., opioid pain relievers, heroin, benzodiazepines, antihistamines, antidepressants).5
Drinking a moderate amount of alcohol (i.e., ≤2 drinks per day for men and ≤1 drink per day for
women) (Table 6.1) has a causal adverse effect on the risk for breast cancer and oral and esophageal
cancers.18 This is dose-dependent; the more a person drinks, the higher the risk. Drinking ≥30
grams/day (2.1 standard drinks) increases the rate of breast cancer by 32% compared with those
with no alcohol intake.17 The mechanism in causing breast cancer is likely an increase in estrogen
steroids, increasing the risk for hormone-sensitive tumors.18
164
TABLE 6.1
What Is a Standard Drink?
A standard drink in the United States is any drink that contains about 14 grams of pure alcohol (about 0.6 fl oz or 1.2 tbsp). Below are U.S. standard
drink equivalents. These are approximate because different brands and types of beverages vary in their actual alcohol content.
Many people do not know what counts as a standard drink; therefore they do not realize how many standard drinks are in the containers in which
these drinks are often sold. Some examples:
For beer, the approximate number of standard drinks in:
12 oz = 1
16 oz = 1.3
22 oz = 2
40 oz = 3.3
For malt liquor, the approximate number of standard drinks in:
12 oz = 1.5
16 oz = 2
22 oz = 2.5
40 oz = 4.5
For table wine, the approximate number of standard
drinks in:
A standard 750-mL (25-oz) bottle = 5
For 80-proof spirits, or “hard liquor,” the approximate number of standard
drinks in:
A mixed drink = 1 to 3 or more*
A pint (16 oz) = 11
A fifth (25 oz) = 17
1.75 L (59 oz) = 39
*NOTE: It can be difficult to estimate the number of standard drinks in a single mixed drink made with hard liquor. Depending on
factors such as the type of spirits and the recipe, a mixed drink can contain from 1 to 3 or more standard drinks.
Adapted from National Institute on Alcohol Abuse and Alcoholism (NIAAA). (Reprinted 2007). Helping patients who drink too much:
a clinician's guide. Available at http://pubs.niaaa.nih.gov/publications/Practitioner/CliniciansGuide2005/clinicians_guide.htm.
Heavy drinking (≥15 drinks per week for men and ≥8 drinks per week for women)6 increases the
risks for chronic diseases such as hypertension, heart disease, and stroke; the cancers listed earlier
plus liver and colorectal cancer8; mental illness such as depression and anxiety; learning and
memory dysfunction; social issues such as family problems and unemployment; and certainly
alcohol dependence or alcoholism.6 Alcoholism is a major cause of liver cirrhosis, which is the 8th
leading cause of death in the United States.12 The latest established causal relationship is between
heavy drinking and infectious disease such as tuberculosis and the course of HIV/AIDS.32 There is
no safe limit of drinking for pregnant women as alcohol drinking causes fetal alcohol syndrome and
preterm birth problems.32
Binge drinking (≥5 drinks per occasion for men and ≥4 drinks per occasion for women) increases
the risk for injuries (motor vehicle accidents, falls, drownings, burns); violence (sexual assault,
homicide, suicide); alcohol poisoning, which is a medical emergency; and risky sexual behaviors
(unprotected sex or sex with multiple partners), which increases risk for sexually transmitted
diseases and unintended pregnancy.6
Alcohol has many effects on the cardiovascular (CV) system. Evidence from multiple studies
shows that in men and women, consuming more than 1 or 2 drinks of alcohol a day is associated
with hypertension.21 There are biological mechanisms postulated for this: arterial plaque buildup;
baroreceptor reflex changes; body fluid changes through the renin-angiotensin-aldosterone
system21; and activation of the sympathetic nervous system, which constricts blood vessels and
increases contractility. Also, ingestion of >2 drinks/day and especially >3 drinks/day increases the
risk for all types of stroke. Heavy daily drinking (>5 drinks/day) increases the risk of heart failure
and cardiomyopathy.21 Finally, alcohol drinking is positively associated with risk for atrial
fibrillation (AF), the most common cardiac arrhythmia. Consuming 15 to 21 drinks/week increases
the risk of AF by 14% and >21 drinks/week increases risk by 39%.16a Binge drinking is especially to
165
http://pubs.niaaa.nih.gov/publications/Practitioner/CliniciansGuide2005/clinicians_guide.htm
be avoided (increasing AF risk by 29%), but even habitual moderate intake poses a small and
significant risk of developing AF.16a,30
Because of alcohol-related morbidity, many patients you encounter in primary care settings and
in the hospital will have a significant drinking history. People visiting primary care providers have
a significantly higher rate of past or present alcohol abuse than those in the general population.
Alcohol abuse and alcohol withdrawal are involved in trauma, violence, suicides, motor vehicle
accidents, and other conditions leading to intensive care unit (ICU) admissions. Among ICU
patients an alcohol use disorder is present in 20% of patients and is higher with specific
subpopulations: 40% of veterans and ED admissions, 60% to 70% of trauma patients, and up to 80%
of patients with head and neck surgery.11
Defining Illicit Drug Use
There are 7 categories of illicit drug use: marijuana,a cocaine, heroin, hallucinogens, inhalants,
methamphetamine, and the nonmedical use of psychotherapeutics (prescription pain relievers,
tranquilizers, stimulants, and sedatives). The prevalence of Americans ages 12 years or older
reporting the use of any of the categories is 10.1%.25 Marijuana use is the most common, used by
almost 80% of drug users. Among youth ages 12 to 17 years, 17.5% used illicit drugs in the past
year. This warrants our alarm and intervention. Any amount of illicit drug use has serious legal
consequences and consequences for health, trauma, brain maturation, relationships, school, and
career.
The United States now faces epidemics of prescription drug abuse and opioid-related deaths.
Over 2.4 million Americans have a severe opioid-use disorder, including dependence on pain
medications, heroin, or both.31 Since 2013, rates of drug overdose death in the United States have
exceeded mortality from motor vehicle accidents! Of those who obtained pain relievers
nonmedically for misuse, more than half (53.7%) got them from a friend or relative. Among
prescription abusers, 34% got their pain relievers from one doctor (Fig. 6.2).
6.2 (SAMHSA, 2016.)
Many people who abuse prescription opioids switch to heroin as prescription opioids become
harder to obtain and to mix for ingestion, and for cost. Abuse of prescription opioids only was high
but stable from 2008 to 2010, and then decreased annually by 6.1%.7 At the same time, concurrent
abuse of both prescription opioids and heroin increased by about 10.3% yearly from 2008 to 2014.7
166
Still the abuse of pain relievers is alarmingly high, with 17.2% of people ages 12 years or older
misusing in the past year.25
Contributing factors include an increase in prescriptions for pain relief in response to the past
practice of undertreatment of pain in the mid- to late 20th century. The pendulum swung in the
2000s, with aggressive marketing by drug companies for an oxycodone product; the marketing
strategies included paid speaker-training conferences; pain “education” programs; sales
representatives who, encouraged by bonuses, targeted high-volume opioid prescribers; and a
misrepresentation of the addiction risk of the oxycodone product.22 The dangers of prescription
opioids (oxycodone, hydrocodone, methadone) are dose-dependent and include abuse and
addiction, overdose, trauma and motor vehicle accidents, pneumonia, CV events, and death.22
Finally, the combination of drinking alcohol and taking alcohol-interactive (AI) drugs is
alarmingly high (Fig. 6.3). In the United States 41% of current alcohol drinkers ages 20 years and
over also take prescription AI medications. The most widely used medications are cardiovascular
and CNS drugs.3 Preventing alcohol-related ADRs and accidental overdose is a crucial concern.
6.3
Diagnosing Substance Abuse
Substance abuse and ultimately addiction are diseases of the brain. The use of alcohol and other
drugs activates reward circuits in the brain by releasing dopamine, and the users feel pleasure.29
With continued use, the reward circuits are desensitized, pleasure is no longer felt, and the user
feels less motivation to engage in everyday activities. The conditioned response (environmental
cues that precede drug use) become more important, leading to cravings for alcohol and other
drugs. Continued use leads to brain changes involved in executive function (decision making,
control of inhibition, self-monitoring), and repeated relapse occurs.29
Not all drug use leads to addiction; although it is a brain disease, it is influenced by genetic,
environmental, and developmental factors. The rate of Americans classified with substance abuse
disorder is 8.8% of those ages 12 years and older; 5.9% had an alcohol use disorder, and 2.9% had an
illicit drug use disorder.25 It is important to note now that more and more people are poly-drug
users.
The continuum of alcohol drinking ranges from special occasion use through low-to-moderate
drinking to heavy drinking. Alcohol dependence, or alcoholism, is a chronic progressive disease
that is not curable but is highly treatable. Accurate diagnosis is needed to provide advice, brief
intervention, appropriate treatment, and follow-up. The gold standard of diagnosis is well defined
by the American Psychiatric Association (APA) in its Diagnostic and Statistical Manual of Mental
Disorders, 5th edition. Table 6.2 gives the criteria for Alcohol Use Disorder. Unfortunately alcohol
problems are underdiagnosed in both primary care settings and hospitals. Excessive alcohol use
167
often is unrecognized until patients develop serious complications.
TABLE 6.2
Alcohol Use Disorder
Diagnostic Criteria
A. A problematic pattern of alcohol use leading to clinically significant impairment or distress, as manifested by at least two of the following
occurring within a 12-month period:
1. Alcohol is often taken in larger amounts or over a longer period than was intended.
2. There is a persistent desire or unsuccessful efforts to cut down or control alcohol use.
3. A great deal of time is spent in activities necessary to obtain alcohol, use it, or recover from its effects.
4. Craving or a strong desire or urge to use alcohol.
5. Recurrent alcohol use results in a failure to fulfill major role obligations at work, school, or home.
6. Continued alcohol use despite having persistent or recurrent social or interpersonal problems caused or exacerbated by the effects of
alcohol.
7. Important social, occupational, or recreational activities are given up or reduced because of alcohol use.
8. Recurrent alcohol use in situations in which it is physically hazardous.
9. Alcohol use is continued despite knowledge of having a persistent or recurrent physical or psychological problem that is likely to have
been caused or exacerbated by alcohol.
10. Tolerance, as defined by either of the following:
a. A need for markedly increased amounts of alcohol to achieve intoxication or desired effect
b. A markedly diminished effect with continued use of the same amount of alcohol
11. Withdrawal, as manifested by either of the following:
a. The characteristic withdrawal syndrome for alcohol
b. Alcohol (or a closely related substance such as a benzodiazepine) taken to relieve or avoid withdrawal symptoms
Specify if:
In early remission: After full criteria for alcohol use disorder were previously met, none of the criteria for alcohol use disorder have been
met for at least 3 months but for less than 12 months (with the exception that criterion A4, “Craving, or a strong desire or urge to use
alcohol,” may be met).
In sustained remission: After full criteria for alcohol use disorder were previously met, none of the criteria for alcohol use disorder have
been met at any time during a period of 12 months or longer (with the exception that criterion A4, “Craving, or a strong desire or urge to
use alcohol,” may be met).
Specify if:
In a controlled environment: This additional specifier is used if the individual is in an environment where access to alcohol is restricted.
Specify current severity:
Mild: Presence of 2-3 symptoms.
Moderate: Presence of 4-5 symptoms.
Severe: Presence of 6 or more symptoms.
From American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders. (5th ed.). Washington, DC:
The Association.
Developmental Competence
Adolescents
Among youth 12 to 17 years of age who are diagnosed with substance use disorders, 3.4% have an
illicit drug disorder and 2.5% have an alcohol disorder. For young adults ages 18 to 25 years, 7.2%
have an illicit drug disorder and 10.9% have an alcohol disorder.25 It is well known that alcohol
retards brain development and maturity levels in adolescents. It is estimated that 4.7% of 16- or 17-
year-olds and nearly 13% of 18- to 20-year-olds drive under the influence of alcohol. Youth who
abuse alcohol also engage in high-risk sexual behavior and have academic problems in school,
injuries from trauma, and alcohol problems that carry over to adulthood.
The Pregnant Woman
The dangers of alcohol use to the growing fetus during pregnancy are well known. Alcohol slips
easily through the placenta; a defined dose that is easily metabolized by an adult woman is toxic to
a fetus who weighs only grams or a few pounds. Alcohol toxicity results in physical, learning, and
behavioral problems in a fetus that are defined in the Fetal Alcohol Spectrum Disorder (see Table
14.2, p. 268). Public awareness and health teaching have reduced the number of U.S. pregnant
women who drink alcohol. During the 1st trimester, 19% of pregnant women ages 15 to 44 years
drink alcohol, perhaps not knowing they are pregnant; this drops to 5% and 4.4% in the 2nd and
3rd trimesters, respectively.28 The bottom line is that no amount of alcohol is safe during
pregnancy.
No illicit drugs are safe during pregnancy either, yet 9% of pregnant women ages 15 to 44 years
were current illicit drug users during the 1st trimester, 4.8% during the 2nd trimester, and 2.4%
during the 3rd trimester.28
168
The Aging Adult
The number of older adults in the U.S. population is exploding; those over 60 years of age will
number an estimated 77.6 million in 2020, and the total is projected to reach 112.5 million by 2060.27
In 2015 the percentage of adults ages 60 to 64 years with alcohol use was 50.9%, with binge alcohol
use 17%, and with heavy alcohol use 4.5%. Of those 65 years and older, the percentage with alcohol
use was 42.7%, with binge alcohol use 10%, and with heavy alcohol use 2.5%.25 Thus the projected
population increase will yield a huge increase in the number of older drinkers by 2060.2
At the same time, older adults have numerous characteristics that can increase the risks
associated with alcohol use. Liver metabolism, body water, and kidney function are decreased,
which increases the bioavailability of alcohol in the blood for longer periods. Aging people lose
muscle mass; less tissue to which the alcohol can be distributed means an increased alcohol
concentration in the blood. Older adults may be on multiple medications, which can interact
adversely with alcohol (e.g., benzodiazepines, antidepressants, antihypertensives, pain relievers,
aspirin). Thus drinking alcohol increases the risk for falls, depression, gastrointestinal problems,
toxic reactions, and fatal overdoses. Older adults may avoid detection of their alcohol problems;
they may avoid alcohol-related consequences such as driving under the influence (DUI) because
they no longer drive, or they may avoid job problems because they no longer work.
In addition, alcohol drinking increases the risk of cognitive decline in older adults.1 All these
factors are concerning because Americans over age 60 years are drinking more now than 20 years
ago.15 Both men and women have a higher prevalence of current drinking, and older women have
significantly more binge drinking.2 It may be more difficult for providers to isolate the symptoms of
alcohol use disorders in the aging population, especially when considering the denial and fear of
stigma that exist to a higher degree in this age group.9
169
Subjective Data
If the patient currently is intoxicated or going through substance withdrawal, collecting any history
data is difficult and unreliable. However, when sober, most people are willing and able to give
reliable data, provided the setting is private, confidential, and nonconfrontational.
Examiner Asks/Rationale
1. Ask about alcohol use: “Do you sometimes drink beer, wine, or other alcoholic beverages?” If the answer is
“Yes,” ask the screening question about heavy drinking days: “How many times in the past year have you
had 5 or more drinks a day (for men) or 4 or more drinks a day?”(for women)
One or more heavy
drinking days means that
this person is an “at-risk”
drinker.
To complete a picture of the person’s drinking pattern, ask: “On average, how many days a week do you have
an alcoholic drink?” and “On a typical drinking day, how many drinks do you have?” Recommend that the
person stay at low-to-moderate drinking patterns: for men, ≤2 drinks/day; for women, ≤1 drink/day; for older
than 65 years, ≤1 drink/day. Recommend even lower limits or abstinence for patients who take medications that
interact with alcohol, have a health condition exacerbated by alcohol, or are pregnant (advise abstinence here).
For men, ≥15 drinks/week
= heavy or at-risk
drinking. For women, ≥8
drinks/week = heavy or at-
risk drinking.6
2. Use brief screening instruments to help identify problem drinking and people who need a more thorough
assessment. Ask the patient to respond to the AUDIT questionnaire (Table 6.3). A quantitative form has the
advantage of letting you document a number for a response so it is not open to individual interpretation. The
AUDIT helps detect both less severe alcohol problems (hazardous and harmful drinking) and alcohol abuse
and dependence disorders. It is helpful with ED and trauma patients because it is sensitive to current as
opposed to past alcohol problems. It is useful in primary care settings with adolescents and older adults. It is
relatively free of gender and cultural bias.
TABLE 6.3
The Alcohol Use Disorders Identification Test—AUDIT*
Questions 0 1 2 3 4
1. How often do you have a drink containing alcohol? Never Monthly
or less
2-4 times
a month
2-3
times a
week
4 or
more
times
a
week
2. How many drinks containing alcohol do you have on
a typical day when you are drinking?
1 or 2 3 or 4 5 or 6 7 to 9 10 or
more
3. How often do you have 5 or more drinks on one
occasion?
Never Less
than
monthly
Monthly Weekly Daily
or
almost
daily
4. How often during the last year have you found that
you were not able to stop drinking once you had
started?
Never Less
than
monthly
Monthly Weekly Daily
or
almost
daily
5. How often during the last year have you failed to do
what was normally expected of you because of
drinking?
Never Less
than
monthly
Monthly Weekly Daily
or
almost
daily
6. How often during the last year have you needed a
first drink in the morning to get yourself going after a
heavy drinking session?
Never Less
than
monthly
Monthly Weekly Daily
or
almost
daily
7. How often during the last year have you had a feeling
of guilt or remorse after drinking?
Never Less
than
monthly
Monthly Weekly Daily
or
almost
daily
8. How often during the last year have you been unable
to remember what happened the night before because
of your drinking?
Never Less
than
monthly
Monthly Weekly Daily
or
almost
daily
9. Have you or someone else been injured because of
your drinking?
No Yes, but
not in
the last
year
Yes,
during
the
last
Hazardous drinking—
Pattern is high risk for
future damage to physical
or mental health. Harmful
drinking—Alcohol use
already results in
problems.
170
year
10. Has a relative, friend, doctor, or other health care
worker been concerned about your drinking or
suggested that you cut down?
No Yes, but
not in
the last
year
Yes,
during
the
last
year
Total
*NOTE: This questionnaire (the AUDIT) is reprinted with permission from the World Health Organization. To reflect standard drink sizes in the United
States, the number of drinks in question 3 was changed from 6 to 5. A free AUDIT manual with guidelines for use in primary care settings is available
online at www.who.org.
Note that the AUDIT covers three domains: alcohol consumption (questions 1 to 3); drinking behavior or
dependence (questions 4 to 6); and adverse consequences from alcohol (questions 7 to 10). Record the score at
the end of each line and total; the maximum total is 40.
A cut point of ≥8 points for
men or ≥4 points for
women, adolescents, and
those older than 60 years
indicates hazardous
alcohol consumption.
The AUDIT-C is a shorter form that is helpful for acute and critical care units. The AUDIT-C is a valid screening
test for heavy drinking and/or active alcohol abuse.5 It uses the three alcohol consumption questions (numbers
1 to 3), including question number 3, which is itself a brief screening test for heavy drinking. This helps
examiners discriminate heavy, at-risk drinking from low-risk drinking in a very short time (less than 2
minutes). The possible score is 0 to 12; a low-risk response is ≤2 points.
A cut point of ≥3 is a
measure of heavy or at-risk
drinking. In addition, a
“Yes” to drinking 6 or
more drinks on one
occasion ever in the past
year warrants further
assessment.
The CAGE questionnaire (Cut down, Annoyed, Guilty, Eye-opener)10 described in Chapter 4 (p. 53) works well
in busy primary care settings because it takes less than 1 minute to complete and the 4 straightforward yes/no
questions are easy for clinicians to remember. The CAGE tests for lifetime alcohol abuse and/or dependence but
does not distinguish past problem drinking from active present drinking.4 It may not detect low but risky levels
of drinking and is less effective with women and minority groups.24
Answering “Yes” to ≥2
CAGE questions signals
possible alcohol abuse and
a need for further
assessment.
3. Assess for alcohol use disorders using the standard clinical diagnostic criteria. Determine whether there is a
maladaptive pattern of alcohol use causing clinically significant impairment or distress.20 Ask, “In the past 12
months has your drinking repeatedly caused or contributed to:
• Risk for bodily harm (drinking and driving, operating machinery, swimming)?
• Relationship trouble (family or friends)?
• Role failure (interference with home, work, or school obligations)?
• Run-ins with the law (arrests or other legal problems)?”
If “Yes” to one or more
points, it means that the
person has been abusing
alcohol. Warrants advice
and brief intervention for
assistance.
Ask, “In the past 12 months have you:
• Not been able to stick to drinking limits (repeatedly gone over them)?
• Not been able to cut down or stop (repeated failed attempts)?
• Shown tolerance (needed to drink a lot more to get the same effect)?
• Shown signs of withdrawal (tremors, sweating, nausea, or insomnia when trying to quit or cut down)?
• Kept drinking despite problems (recurrent physical or psychological problems)?
• Spent a lot of time drinking (or anticipating or recovering from drinking)?
• Spent less time on other matters (activities that had been important or pleasurable)?”
If “Yes” to 2 or more
→, person may have
alcohol use disorder.
Warrants counseling
and brief intervention
for treatment or
mutual help meetings
(AA, NA).
If “No” →, patient is
still at risk for
developing alcohol-
related problems.
Warrants advice and
brief intervention for
assistance and close
follow-up.
Ask about use of illicit substances: “Do you sometimes take illicit or street drugs such as marijuana, cocaine,
hallucinogens, narcotics?” If “Yes,” “When was the last time you used drugs? How much did you take that
time?”
Screening Women for Alcohol Problems
The TWEAK questions23 are a combination of items of two other questionnaires that help identify at-risk
drinking in women, especially pregnant women. Instead of the guilt question from the CAGE questionnaire,
the TWEAK includes a question that measures tolerance:
• Tolerance: How many drinks can you hold? Or how many drinks does it take to make you feel high?
Taking ≥3 drinks to feel
high = Tolerance.
• Worry: Have close friends or relatives worried or complained about your drinking in the past year?
• Eye-opener: Do you sometimes take a drink in the morning when you first get up?
• Amnesia: Has a friend or family member ever told you about things you said or did that you could not
remember?
• Kut down: Do you sometimes feel the need to cut down on your drinking?
Score 2 points each for Tolerance and Worry, 1 point each for the rest. A low-risk response is ≤1 point. Scoring ≥2 points = a
drinking problem.
Screening Aging Adults
Use the SMAST-G questionnaire for older adults who report social or regular drinking of any amount of
alcohol. Older adults have specific emotional responses and physical reactions to alcohol, and the 10 questions
with yes/no responses address these factors. A low-risk response is zero or 1 point (Table 6.4).
Scoring ≥2 points indicates
an alcohol problem and a
need for more in-depth
assessment.
4. Advise and Assist (brief intervention). Although it is beyond the scope of this text to present treatment plans,
the consequences of substance abuse are so debilitating and destructive to patients and their families that a
short statement of assistance and concern is given here. If your assessment has determined the patient to
171
http://www.who.org
have at-risk drinking or illicit substance use, state your conclusion and recommendation clearly.20
“You’re drinking more than is medically safe.” Relate to the person’s concerns and medical findings, if present.
“I strongly recommend that you cut down (or quit), and I’m willing to help.”
Or, if you determine the person to have an alcohol use disorder, state your conclusion and recommendation
clearly:
“I believe that you have an alcohol use disorder. I strongly recommend that you quit drinking, and I’m willing to
help.” Relate to the person’s concerns and medical findings if present.
TABLE 6.4
Short Michigan Alcoholism Screening Test—Geriatric Version (SMAST-G)
Yes (1) No (0)
1. When talking with others, do you ever underestimate how much you drink?
2. After a few drinks, have you sometimes not eaten or been able to skip a meal because you didn’t feel hungry?
3. Does having a few drinks help decrease your shakiness or tremors?
4. Does alcohol sometimes make it hard for you to remember parts of the day or night?
5. Do you usually take a drink to relax or calm your nerves?
6. Do you drink to take your mind off your problems?
7. Have you ever increased your drinking after experiencing a loss in your life?
8. Has a doctor or nurse ever said they were worried or concerned about your drinking?
9. Have you ever made rules to manage your drinking?
10. When you feel lonely, does having a drink help?
TOTAL SMAST-G-SCORE (0-10) __________
SCORING: 2 OR MORE “YES” RESPONSES IS INDICATIVE OF AN ALCOHOL PROBLEM.
©The Regents of the University of Michigan, 1991.
Source: University of Michigan Alcohol Research Center. Reprinted with permission.
172
Objective Data
Normal Range of Findings/Abnormal Findings
Clinical laboratory findings (called biomarkers) give objective evidence of problem drinking.
These are less sensitive than self-report questionnaires, but they are useful data to corroborate
the subjective data and are unbiased. The serum protein gamma glutamyl transferase (GGT) is
a commonly used biomarker of alcohol drinking. Occasional alcohol drinking does not raise this
measure, but chronic heavy drinking does. Be aware that nonalcoholic liver disease also can
increase GGT levels in the absence of alcohol.
Chronic alcohol drinking of ≥4 drinks/day
for 4 to 8 weeks significantly raises GGT,
but many chronic drinkers no longer have
increased GGT.
The GGT is helpful in detecting relapses for alcohol-dependent people who are in recovery. A sudden elevated GGT after normal GGT
levels may indicate relapse and prompts
discussion with the person.
The carbohydrate-deficient transferrin (CDT) is used together with the GGT, which may
increase detection of alcohol abuse. Healthy women have higher CDT levels than men; therefore
combining it with GGT may improve accuracy.26
CDT is elevated after drinking 50 to 80 g
alcohol/day for 1 week. CDT normalizes
during abstinence with a half-life of 15
days.
Serum aspartate aminotransferase (AST) is an enzyme found in high concentrations in the
heart and liver.
Chronic drinking for months increases
AST.
From the complete blood count, the mean corpuscular volume (MCV) is an index of red blood
cell (RBC) size. MCV is not sensitive enough to use as the only biomarker for problem drinking.
Heavy alcohol drinking for 4 to 8 weeks
increases MCV.
A direct serum biomarker, phosphatidylethanol (PEth), is a more sensitive and specific method
to evaluate abstinence and sober living.16 It the only biomarker that can detect moderate alcohol
intake. PEth is a phospholipid produced only in the presence of alcohol.
PEth elevates after 3 weeks of drinking
and remains elevated 14 days after
abstinence.26
Breath alcohol analysis detects any amount of alcohol in the end of exhaled air following a deep
inhalation until all ingested alcohol is metabolized. This measure can be correlated with blood
alcohol concentration (BAC) and is the basis for legal interpretation of drinking. Normal values
indicating no alcohol are 0.00.
A BAC ≥0.08% = legal intoxication in most
states (3 standard drinks), with loss of
balance and motor coordination.
When caring for people experiencing alcohol withdrawal, the Clinical Institute Withdrawal
Assessment (CIWA) is the most sensitive scale for objective measurement (Table 6.5). It is
quantified to measure the progress of withdrawal. Intervention with appropriate
pharmacotherapy avoids advanced withdrawal stages such as delirium tremens. Most
withdrawing persons do not progress to advanced stages; thus using the CIWA scale also
avoids overmedicating.
Take the vital signs: blood pressure (BP), pulse, respirations, oxygen saturation. Assess and
rate each of the 10 criteria of the CIWA scale. Each criterion has a range from 0 to 7, except
for “Orientation,” which is rated 0 to 4. Add the scores for the total CIWA-Ar score. A score
of 0 to 7 means that you can assess every 4 hours for 72 hours. If all the scores are <8 for 72
hours, you can safely discontinue use of the CIWA assessment.
Withdrawal symptoms: craving for
alcohol, irritability, anorexia,
abdominal pain, fatigue. Signs are
chills, muscle cramps, palpitations,
tachycardia, hypertension, fever,
disorientation, slurred speech,
staggered gait, poor dexterity.
Scores of 0 to 9 = absent or minimal
withdrawal; 10 to 19 = mild-to-
moderate withdrawal; ≥20 = severe
withdrawal.
If initial score is ≥8, take vital signs
every hour for 8 hours. A score of 8
may trigger PRN medication. A score
of ≥15 triggers scheduled medication.
Clinical appearance and behavioral signs of commonly abused substances are presented in
Table 6.6. Note that clinical signs are described for both the intoxicated person and the person in
withdrawal.
173
Abnormal Findings
TABLE 6.5
Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar)
Patient: _______________________________________________ Date: _____________ Time: ___________:___________
Pulse (1 minute): ___________ Blood pressure: ____________/____________ Resp ____________ O2 Sat _____________
Nausea and vomiting. Ask, “Do you feel sick to your stomach? Have you vomited?” Observation:
0 – No nausea and no vomiting
1 – Mild nausea with no vomiting
2 –
3 –
4 – Intermittent nausea with dry heaves
5 –
6 –
7 – Constant nausea, frequent dry heaves, and vomiting
Tremor. Ask patient to extend arms and spread fingers apart. Observation:
0 – No tremor
1 – Tremor not visible but can be felt, fingertip to fingertip
2 –
3 –
4 – Moderate tremor with arms extended
5 –
6 –
7 – Severe tremor, even with arms not extended
Paroxysmal sweats. Observation:
0 – No sweat visible
1 – Barely perceptible sweating; palms moist
2 –
3 –
4 – Beads of sweat obvious on forehead
5 –
6 –
7 – Drenching sweats
Anxiety. Ask, “Do you feel nervous?” Observation:
0 – No anxiety (at ease)
1 – Mildly anxious
2 –
3 –
4 – Moderately anxious or guarded; thus anxiety is inferred
5 –
6 –
7 – Equivalent to acute panic states as occur in severe delirium or acute schizophrenic reactions
Agitation. Observation:
0 – Normal activity
1 – Somewhat more than normal activity
2 –
3 –
4 – Moderately fidgety and restless
5 –
6 –
7 – Paces back and forth during most of the interview or constantly thrashes about
Tactile Disturbances. Ask, “Do you have any itching, pins-and-needles sensations, burning, or numbness, or do you feel like bugs are
crawling on or under your skin?” Observation:
0 – None
1 – Very mild itching, pins-and-needles sensation, burning, or numbness
2 – Mild itching, pins-and-needles sensation, burning, or numbness
3 – Moderate itching, pins-and-needles sensation, burning, or numbness
4 – Moderately severe hallucinations
5 – Severe hallucinations
6 – Extremely severe hallucinations
7 – Continuous hallucinations
Auditory disturbances. Ask, “Are you more aware of sounds around you? Are they harsh? Do they frighten you? Are you hearing anything
that is disturbing to you? Are you hearing things you know are not there?” Observation:
0 – Not present
1 – Very mild harshness or ability to frighten
2 – Mild harshness or ability to frighten
3 – Moderate harshness or ability to frighten
4 – Moderately severe hallucinations
5 – Severe hallucinations
6 – Extremely severe hallucinations
7 – Continuous hallucinations
Visual disturbances. Ask, “Does the light appear to be too bright? Is its color different? Does it hurt your eyes? Are you seeing anything
that is disturbing to you? Are you seeing things you know are not there? Observation:
0 – Not present
1 – Very mild sensitivity
174
2 – Mild sensitivity
3 – Moderate sensitivity
4 – Moderately severe hallucinations
5 – Severe hallucinations
6 – Extremely severe hallucinations
7 – Continuous hallucinations
Headache, fullness in head. Ask, “Does your head feel different? Does it feel like there is a band around your head?” Do not rate for
dizziness or light-headedness; otherwise rate severity.
0 – Not present
1 – Very mild
2 – Mild
3 – Moderate
4 – Moderately severe
5 – Severe
6 – Very severe
7 – Extremely severe
Orientation and clouding of sensorium. Ask, “What day is this? Where are you? Who am I?” Observation:
0 – Oriented and can do serial additions
1 – Cannot do serial additions or is uncertain about date
2 – Date disorientation by no more than 2 calendar days
3 – Date disorientation by more than 2 calendar days
4 – Disorientated for place and/or person
Total score: _________ (Maximum = 67)
Rater's initials: _________
From Bayard, M., McIntyre, J., Hill, K.R., et al. (2004). Alcohol withdrawal syndrome. Am Fam Physician, 69(6), 1443-1550.
TABLE 6.6
Clinical Signs of Substance Use Disorders
“Substances” refer to agents taken nonmedically to alter mood or behavior.
Intoxication: Ingestion of substance produces maladaptive behavioral changes because of
effects on the central nervous system
Abuse: Daily use needed to function, inability to stop, impaired social and occupational
functioning, recurrent use when it is physically hazardous, substance-related legal
problems
Dependence: Physiologic dependence
on substance
Tolerance: Requires increased amount
of substance to produce same effect
Withdrawal: Cessation of substance
produces syndrome of physiologic
symptoms
Substance Intoxication Withdrawal
Alcohol Appearance. Unsteady gait,
incoordination, nystagmus, flushed face
Behavior. Sedation; relief of anxiety;
dulled concentration; impaired judgment;
expansive, uninhibited behavior;
talkativeness; slurred speech; impaired
memory; irritability; depression;
emotional lability
Uncomplicated. (Shortly after cessation of drinking, peaks at 2nd
day, improves by 4th to 5th day.) Coarse tremor of hands, tongue,
eyelids; anorexia; nausea and vomiting; malaise; autonomic
hyperactivity (tachycardia, sweating, elevated blood pressure);
headache; insomnia; anxiety; depression or irritability; transient
hallucinations or illusions
Withdrawal delirium, “delirium tremens.” (Much less common
than uncomplicated, occurs within 1 week of cessation.) Coarse,
irregular tremor; marked autonomic hyperactivity (tachycardia,
sweating); vivid hallucinations; delusions; agitated behavior; fever
Sedatives,
hypnotics
(benzodiazepines)
Similar to alcohol
Appearance. Unsteady gait,
incoordination
Behavior. Talkativeness, slurred speech,
inattention, impaired memory, irritability,
emotional lability, sexual aggressiveness,
impaired judgment, impaired social or
occupational functioning
Anxiety or irritability; nausea or vomiting; malaise; autonomic
hyperactivity (tachycardia, sweating); orthostatic hypotension; coarse
tremor of hands, tongue, and eyelids; marked insomnia; grand mal
seizures
Nicotine Appearance. Alert, increased systolic
blood pressure, increased heart rate,
vasoconstriction
Behavior. Nausea, vomiting, indigestion
(first use); loss of appetite; head rush;
dizziness; jittery feeling; mild stimulant
Vasodilation, headaches, anger, irritability, frustration, anxiety,
nervousness, awakening at night, difficulty concentrating, depression,
hunger, impatience or restlessness, desire to smoke
Cannabis
(marijuana)
Appearance. Reddened eyes; tachycardia;
dry mouth; increased appetite, especially
for “junk” food; loss of coordination and
balance
Behavior. Euphoria, pleasant state of
relaxation and tranquility, slowed time
perception, increased perceptions,
impaired judgment, social withdrawal,
anxiety, suspiciousness or paranoid
ideation
No withdrawal with occasional use. Chronic heavy use may → mild
withdrawal: irritability, sleep disturbances, weight loss, loss of appetite,
sweating
Cocaine
(including crack)
Appearance. Pupillary dilation,
tachycardia or bradycardia, elevated or
lowered blood pressure, sweating, chills,
nausea, vomiting, weight loss
Dysphoric mood (anxiety, depression, irritability), fatigue, insomnia or
hypersomnia, psychomotor agitation
175
Behavior. Euphoria, talkativeness,
hypervigilance, pacing, psychomotor
agitation, impaired social or occupational
functioning, fighting, grandiosity, visual
or tactile hallucinations
Amphetamines Similar to cocaine
Appearance. Pupillary dilation,
tachycardia or bradycardia, elevated or
lowered blood pressure, sweating or
chills, nausea and vomiting, weight loss
Behavior. Elation, talkativeness,
hypervigilance, psychomotor agitation,
fighting, grandiosity, impaired judgment,
impaired social and occupational
functioning
Dysphoric mood (anxiety, depression, irritability), fatigue, insomnia or
hypersomnia, psychomotor agitation
Opiates
(morphine,
heroin,
meperidine)
Appearance. Pinpoint pupils; decreased
blood pressure, pulse, respirations, and
temperature
Behavior. Lethargy; somnolence; slurred
speech; initial euphoria followed by
apathy, dysphoria, and psychomotor
retardation; inattention; impaired
memory; impaired judgment; impaired
social or occupational functioning
Dilated pupils, lacrimation, runny nose, tachycardia, fever, elevated
blood pressure, piloerection, sweating, diarrhea, yawning, insomnia,
restlessness, irritability, depression, nausea, vomiting, malaise, tremor,
muscle and joint pains; symptoms remarkably similar to clinical picture
of influenza
176
Bibliography
1. Bos I, Vos SJ, Frolich L, et al. The frequency and influence of dementia risk factors
in prodromal Alzheimer's disease. Neurobiol Aging. 2017;56(8):33–40.
2. Breslow RA, Castle I, Chen CM, et al. Trends in alcohol consumption among
older Americans: National health interview surveys, 1997 to 2014. Alcohol Clin
Exp Res. 2017;41(5):976–986.
3. Breslow RA, Dong C, White A. Prevalence of alcohol-interactive prescription
medication use among current drinkers: United States, 1999 to 2010. Alcohol Clin
Exp Res. 2015;39(2):371–379.
4. Bush K, Kivlahan DR, McDonell MB, et al. The AUDIT alcohol consumption
questions. Arch Intern Med. 1998;158:1789–1795.
5. Castle I, Dong C, Haughwout SP, et al. Emergency department visits for adverse
drug reactions involving alcohol: United States, 2005 to 2011. Alcohol Clin Exp Res.
2016;40(9):1913–1925.
6. Centers for Disease Control and Prevention (CDC). Alcohol use and your health.
https://www.cdc.gov/alcohol/fact-sheets/alcohol-use.htm; 2016.
7. Cicero TJ, Ellis MS, Harney J. Shifting patterns of prescription opioid and heroin
abuse in the United States. N Engl J Med. 2015;373(18):1789–1790.
8. Connor J. Alcohol consumption as a cause of cancer. Addiction. 2017;112(2):222–
228.
9. DiBartolo MC, Jarosinski JM. Alcohol use disorder in older adults. Issues Ment
Health Nurs. 2017;38:25–32.
10. Ewing JA. Detecting alcoholism: the CAGE questionnaire. JAMA.
1984;252(14):1905–1907.
11. Ferreira JA, Wieruszewski PM, Cunningham DW, et al. Approach to the
complicated alcohol withdrawal patient. J Inten Care Med. 2017;32(1):3–14.
12. Ge PS, Runyon BA. Treatment of patients with cirrhosis. N Engl J Med.
2016;375(8):767–777.
13. Grant BF, Chou P, Saha TD, et al. Prevalence of 12-month alcohol use, high-risk
drinking and DSM-IV alcohol use disorder in the United States, 2001-2002 to
2012-2013. JAMA Psychiatry. 2017;74(9):911–923.
14. Hack JB, Goldlust EJ, Gibbs F, et al. The H-Impairment index (HII): A
standardized assessment of alcohol-induced impairment in the emergency
department. Am J Drug Alcohol Abuse. 2014;40(2):111–117.
15. Han BH, Moore AA, Sherman S, et al. Demographic trends of binge alcohol use
and alcohol use disorders among older adults in the United States, 2005-2014.
Drug Alcohol Dep. 2017;170:198–207.
16. Kechagias S, Dernroth DN, Blomgren A, et al. Phosphatidylethanol compared
with other blood tests as a biomarker of moderate alcohol consumption in
healthy volunteers. Alcohol Alcohol. 2015;50(4):399–406.
16a. Larsson SC, Drca N, Wolk A. Alcohol consumption and risk of atrial fibrillation.
J Am Coll Cardiol. 2014;64(3):281–289.
17. Mostofsky E, Mukamal KJ, Giovannucci EL, et al. Key findings on alcohol
consumption and a variety of health outcomes from the Nurses' Health Study.
Am J Public Health. 2016;106(9):1586–1591.
18. Mukamal KJ, Clowry CM, Murray MM, et al. Moderate alcohol consumption and
chronic disease. Alcohol Clin Exp Res. 2016;40(11):2283–2291.
19. National Institute on Alcohol Abuse and Alcoholism (NIAAA). Alcohol facts and
statistics. https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-
consumption/alcohol-facts-and-statistics; 2017.
177
https://www.cdc.gov/alcohol/fact-sheets/alcohol-use.htm
https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/alcohol-facts-and-statistics
20. National Institute on Alcohol Abuse and Alcoholism. Helping patients who drink too
much: a clinician's guide.
http://pubs.niaaa.nih.gov/publications/Practitioner/CliniciansGuide2005/Clinicians_guide.htm
2007.
21. Piano MR. Alcohol's effects on the cardiovascular system. Alcohol Res.
2017;38(2):e1–e24.
22. Psaty BM, Merrill JO. Addressing the opioid epidemic. N Engl J Med.
2017;376(16):1502–1503.
23. Russell M, Martier SS, Sokol RJ. Screening for pregnancy risk-drinking. Alcohol
Clin Exp Res. 1994;18(5):1156–1161.
24. Steinbauer JR, Cantor SB, Holzer CE, et al. Ethnic and sex bias in primary care
screening tests for alcohol use disorders. Ann Int Med. 1998;129(5):353–362.
25. Substance Abuse and Mental Health Services Administration (SAMHSA). 2015
National Survey on Drug Use and Health (NSDUH).
https://www.samhsa.gov/data/sites/default/files/NSDUH-DetTabs-
2015/NSDUH-DetTabs-2015/NSDUH-DetTabs-2015.htm; 2016.
26. Tavakoli HR, Hull M, Okasinski LM. Review of current clinical biomarkers for the
detection of alcohol dependence. Innov Clin Neurosci. 2011;8(3):26–33.
27. U.S. Census Bureau. Projections of the population by sex and age for the United States;
2015 to 2060. Table 9. Projections of the Population by Sex and Age for the United
States: 2015 to 2060. https://www.census.gov/programs-
surveys/popproj/data/tables.2014.html; 2014.
28. U.S. Department of Health and Human Services. Results from the 2013 national
survey on drug use and health.
https://www.samhsa.gov/data/sites/default/files/NSDUHresultsPDFWHTML2013/Web/NSDUHresults2013
2014.
29. Volkow ND, Koob GF, McLellan T. Neurobiologic advances from the brain
disease model of addiction. N Engl J Med. 2016;374(4):363–370.
30. Voskoboinik A, Prabhu S, Ling L, et al. Alcohol and atrial fibrillation: A sobering
review. JACC. 2016;68(23):2567–2576.
31. Williams AR, Bisaga A. From AIDS to opioids—How to combat an epidemic. N
Engl J Med. 2016;375(9):813–815.
32. World Health Organization (WHO). Alcohol fact sheet.
http://www.who.int/mediacentre/factsheets/fs349/en/; 2015.
aRecreational marijuana is legal in 10 states and the District of Columbia; medical marijuana is legal
in 33 states.
178
http://pubs.niaaa.nih.gov/publications/Practitioner/CliniciansGuide2005/Clinicians_guide.htm
https://www.samhsa.gov/data/sites/default/files/NSDUH-DetTabs-2015/NSDUH-DetTabs-2015/NSDUH-DetTabs-2015.htm
https://www.census.gov/programs-surveys/popproj/data/tables.2014.html
https://www.samhsa.gov/data/sites/default/files/NSDUHresultsPDFWHTML2013/Web/NSDUHresults2013
http://www.who.int/mediacentre/factsheets/fs349/en/
C H A P T E R 7
179
Domestic and Family Violence Assessment
In the United States, approximately 20 people per minute are abused by an intimate partner, over
20,000 calls per day are placed to a domestic violence hotline,20 and half of all female homicide
victims are killed by a current or former intimate partner.23 An average of 5 children die every day
as a result of abuse and neglect,8 and a report of child abuse is made every 10 seconds.29 Intimate
partner violence, child abuse, and elder abuse are important health problems that you must
recognize the signs of and assess for in every patient (Fig. 7.1). The Joint Commission has set
standards that all health care settings have policies and procedures to assess, document, and make
referrals for family violence, including intimate partner abuse, child abuse, and elder abuse.
7.1 (© Nicolesy/iStock/Thinkstock.)
Types of Violence
Intimate Partner Violence
In the United States, approximately 10 million people are physically abused by intimate partners
annually, which equates to an average of 20 people every minute. Approximately 33% of women
and 25% of men report being abused by an intimate partner.20 An intimate partner is any partner
(i.e., girlfriend/boyfriend, spouse, dating partner, sexual partner) with whom the person has a close
relationship that may include emotional connectedness and physical/sexual contact. Intimate
partner violence (IPV) includes both current and former partners, so the person need not currently
be in a relationship to experience IPV. IPV can be divided into 4 main categories2:
• Physical violence is the use of force that could cause death,
disability, or injury.
• Sexual violence includes any attempted or completed sex acts
without the consent of the other person. Acts of sexual violence
include, but are not limited to, rape, unwanted sexual contact, and
exposure to sexual situations (e.g., pornography).
• Stalking is repeated, unwanted attention that leads to fear (e.g.,
repeated phone calls, spying, damaging personal property).
• Psychological aggression is a form of emotional abuse wherein
the aggressor uses verbal or nonverbal communication to exert
180
control or harm the person emotionally.
IPV also includes teen dating violence, which is physical, sexual, psychological, or emotional
violence that occurs in a dating relationship during the adolescent years. Before the age of 18, 8.5
million female adolescents report being raped and 1.5 million male adolescents report being made
to penetrate. Youth who experience dating violence are more likely to experience depression or
anxiety, to engage in unhealthy behaviors (e.g., smoking and alcohol use), and to have thoughts
about suicide.5 It is important to note that, with advances of technology, new types of relationship
violence are emerging, such as “sexting” or cyber abuse, which can be perpetrated 24/7 from a
distance.
Child Abuse and Neglect
An average of 5 children die every day from child abuse and neglect.8 Approximately 683,000
children are victims of child abuse and/or neglect each year, and that number is steadily
increasing.29 Child abuse and neglect are defined at both the federal and state levels. The Child
Abuse and Prevention Treatment Act sets forth a federal definition of abuse and neglect, and it was
recently amended to include sex trafficking and human trafficking in the definition and to enhance
protections for infants affected by withdrawal symptoms and Fetal Alcohol Spectrum Disorder.7
Some general definitions of child abuse and neglect include the following6:
• Neglect is the failure to provide for a child's basic needs
(physical, medical, and supervision). Prenatal drug exposure, child
abandonment, and the manufacturing of methamphetamines in
the presence of a child are considered neglect in some states.
Failure to educate the child is included as neglect in approximately
25 states.
• Physical abuse is nonaccidental physical injury caused by
punching, beating, kicking, biting, burning, shaking, or otherwise
harming a child. Even if the parent or caregiver did not intend to
harm the child, such acts are considered abuse when done
purposefully. Human trafficking, including labor trafficking and
involuntary servitude, is considered physical abuse in
approximately 7 states.
• Sexual abuse includes fondling a child's genitals, incest,
penetration, rape, sodomy, indecent exposure, and commercial
exploitation through prostitution or the production of
pornographic materials. Sexual abuse includes human trafficking
(sex trafficking) in 21 states.
• Emotional abuse is any pattern of behavior that harms a child's
emotional development or sense of self-worth. It includes frequent
belittling, rejection, threats, and withholding of love and support.
Every state and U.S. territory has a definition of child abuse and neglect that may expand upon
the federal definition. As a health care provider, it is important that you know the state definition
and state laws related to child abuse and neglect since you are a mandatory reporter. As a
mandatory reporter, you are required by law to report any known or suspected child abuse or
neglect.
181
Elder Abuse and Neglect
Approximately 10% of Americans ages 60 years and older have experienced elder abuse, with
estimates as high as 5 million people per year. Elder abuse is underreported, with some estimates
that only 1 in 14 cases are actually reported to the authorities. In nearly 60% of the elder abuse and
neglect incidents, the perpetrator is a family member, most commonly an adult child or spouse.21
Elder abuse includes both intentional acts and failure to act by a caregiver or trusted person. Forms
of elder abuse include the following11:
• Physical abuse is when an elder is intentionally injured,
assaulted, threatened with a weapon, or inappropriately
restrained.
• Sexual abuse or abusive sexual contact includes any sexual
contact against the elder's will, including sexual contact with a
person unable to understand the act or communicate consent.
• Psychological or emotional abuse includes verbal and
nonverbal behavior meant to inflict fear and distress. It includes
humiliation, embarrassment, controlling behavior, social isolation,
and damaging/destroying property.
• Neglect is the failure of the caregiver to prevent harm. Neglect
includes failure to meet basic needs such as hygiene,
nutrition/hydration, clothing, shelter, and medical care.
• Financial abuse or exploitation is the unauthorized or improper
use of the elder's resources for monetary or personal benefit,
profit, or gain, such as forgery, theft, or improper use of
guardianship or power of attorney.
Almost every state has some form of mandatory reporting of abused older adults and other
vulnerable patients (the developmentally disabled and the mentally ill). You need to be familiar
with the reporting requirements in the state in which you practice. Those who work in communities
that border two states need to be informed about mandatory reporting statutes in both states. In
some communities the reporting mechanism is established county by county, whereas other states
have a statewide hotline. As mandatory reporters of abuse, you need only have suspicion that elder
abuse and/or neglect may have occurred to generate a call to the authorities. You are not required to
have proof before reporting suspected abuse.
Health Effects of Violence
Violent experiences have significant immediate and long-term effects. The most obvious immediate
health care problem is injury, but an increase in annual health care cost may persist for up to 15
years after the violence ends. Traumatic brain injury, headaches, and pain are directly associated
with the injury received; however, victims of abuse also have significantly more chronic health
problems, including significantly more cardiovascular, endocrine, immune, and gastrointestinal
problems.3,10 Women who are victims of abuse have more gynecologic problems and negative
consequences during pregnancy (e.g., preterm birth, low-birth-weight babies, perinatal deaths).
Abuse during pregnancy is also a significant health problem, with serious consequences for both
the pregnant mother (e.g., depression, substance abuse) and infant (low birth weight, increased risk
of child abuse).3
Abuse victims have significantly more depression, suicidality, posttraumatic stress disorder
(PTSD), and problems with substance abuse (Fig. 7.2). Rape survivors are 3 times more likely to use
marijuana and 6 times more likely to use cocaine than nonvictims.30 Forced sex contributes to a host
182
of reproductive health problems, including chronic pelvic pain, unintended pregnancy, sexually
transmitted infections, and urinary tract infections.3
7.2
Child maltreatment can have deleterious effects on a child's quality of life and may lead to overall
poor health, which can last into adulthood. Children who are abused have an increased incidence of
improper brain development, cerebral palsy due to head trauma, delayed language development,
and mental health issues (e.g., depression, anxiety), and they are at higher risk for chronic diseases
such as obesity, cardiovascular disease, cancer, and high blood pressure. Childhood abuse and
neglect increase the likelihood of juvenile arrest, teen pregnancy, and adult criminal behavior.4
Culture and Genetics
IPV is a phenomenon that occurs universally in all populations.1 However, lifetime prevalence of
IPV (including rape, physical violence, and stalking) is significantly higher among ethnic and racial
minorities than among non-Hispanic white women and men. Multiracial, American Indian/Alaskan
native, and non-Hispanic black women and men are at higher risk for IPV than non-Hispanic white
women and men. Unfortunately, little research exists about the effectiveness of screening and
prevention efforts among racial and ethnic minorities and the effectiveness of therapeutic
interventions to help survivors with resultant mental health problems.
Although there are wide differences among distinct cultural groups and within any given culture,
some common themes create barriers to treatment for all. These barriers are societal stressors, legal
issues, and lack of access to culturally appropriate care.
Societal stressors contribute to daily struggles and conflict in relationships. For example, poverty
is a risk factor for IPV. All ethnic and racial minority groups have poverty rates exceeding the
national average for non-Hispanic whites. In addition, help-seeking often is deferred because of
fears of racism and discrimination. Because of past experiences of prejudice and discrimination by
health care providers and lack of knowledge of the culture, many immigrants and members of
racial and ethnic minorities are reluctant to seek help in the health care setting.
Legal status in the United States creates a barrier to care for many immigrant families. If a
woman does not have legal status or citizenship within the United States, she may fear that she will
be deported and lose her children.26 Many immigrant women are unaware of their legal rights in
situations of IPV. The Violence Against Women Act (VAWA) offers assistance to IPV survivors and
includes protections for immigrant survivors. VAWA includes stipulations for coordinating services
between law enforcement, victim services, and attorneys; training personnel to provide services;
and funding programs to help victims.17
A lack of access to culturally appropriate care is a continual problem. In spite of the widespread
growth of IPV services and the widely distributed availability of translation services, immigrants
and ethnic minorities are less likely than non-Hispanic whites to use social service resources.
Traditional gender roles reinforce dependency and may increase the risk for IPV against women.
183
Women are often financially dependent on their husbands, and this dependency is reinforced by
religious and cultural values, which identify men as the providers within the family. In some
cultures, the traditional belief is that a man has the right to physically discipline his wife. In these
cases, the women may not report violence because they expect it as a social norm. In other cases,
women may feel stigmatized if they speak out against violence.32
To address barriers to care, recommendations for culturally sensitive approaches to screening and
treatment are available.14 These recommendations include access to bilingual bicultural providers,
access to translators, education about legal rights, incorporation and acknowledgment of the
importance of religion and training of religious leaders, and involvement of the family and outreach
to the community to raise awareness of the prevalence of IPV. However, the most important aspects
of treatment are to understand the meaning and experiences of IPV for each person and to account
for her or his cultural beliefs and values.
Documentation
Documentation of IPV, child abuse, and elder abuse must include detailed, nonbiased progress
notes, injury maps, and photographic documentation as appropriate. Written documentation of
histories needs to be verbatim but within reason. It may be unrealistic to transcribe everything the
person tells you, but it is important to capture exceptionally poignant phrases. Phrases that identify
the reported perpetrator and severe threats of harm made by the reported perpetrator are
important. Other aspects of the abuse history, including reports of past abusive incidents, can be
paraphrased with the use of partial direct quotations.
When quoting or paraphrasing the history, you should not sanitize the words reportedly heard
by the victim. Verbatim documentation of the reported perpetrator's threats interlaced with curses
and expletives can be useful in future court proceedings. Also be careful to use the exact terms that
an abused patient uses to describe sexual organs or sexually assaultive behaviors. If you are unsure
what the person means, ask for clarification.
Documentation of the physical examination needs to be thorough and unbiased. Do not speculate
on what caused an injury; instead, document what you observed and what the victim said.
Document any lesions using appropriate terminology. Table 7.1 lists common forensic terms with
definitions.
TABLE 7.1
Forensic Terminology
Abrasion A wound caused by rubbing the skin or mucous membrane.
Avulsion The tearing away of a structure or part.
Bruise Superficial discoloration caused by hemorrhage into the tissues from ruptured blood vessels beneath the skin surface, without the
skin itself being broken; also called a contusion.
Contusion A bruise; injury to tissues without breakage of skin; blood from broken blood vessels accumulates, producing pain, swelling,
tenderness.
Cut See “Incision.”
Ecchymosis A hemorrhagic spot or blotch, larger than petechia, in the skin or mucous membrane, forming a nonelevated, rounded or
irregular blue or purplish patch.
Hematoma A localized collection of extravasated blood, usually clotted in an organ, space, or tissue.
Hemorrhage The escape of blood from a ruptured vessel, which can be external, internal, and/or into the skin or other organ.
Incision A cut or wound made by a sharp instrument; the act of cutting.
Laceration The act of tearing or splitting; a wound produced by the tearing and/or splitting of body tissue, usually from blunt impact over a
bony surface.
Lesion A broad term referring to any pathologic or traumatic discontinuity of tissue or loss of function of a part.
Patterned injury An injury caused by an object that leaves a distinct pattern on the skin and/or organ (e.g., being whipped with an extension
cord) or an injury caused by a unique mechanism of injury (e.g., immersion burns to the hands [glove burns] or feet [sock burns]).
Pattern of injuries Usually bruises and fractures in various stages of healing.
Petechiae Minute, pinpoint, nonraised, perfectly round purplish-red spots caused by intradermal or submucous hemorrhage, which later
turn blue or yellow.
Puncture The act of piercing or penetrating with a pointed object or instrument.
Stab wound A penetrating, sharp, cutting injury that is deeper than it is wide.
Traumatic alopecia Loss of hair from pulling and yanking or by other traumatic means.
Wound A general term referring to a bodily injury caused by physical means.
Adapted from Merriam-Webster's Medical Desk Dictionary Revised Edition. (2005). Springfield, Ma: Merriam-Webster; and
Sheridan, D. J., & Nash, K. R. (2007). Acute injury patterns of intimate partner violence victims. Trauma Violence Abuse, 8(3), 281-
289.
Digital photographic documentation in the medical record can be invaluable. Prior written
consent to take photographs should be obtained from all cognitively intact, competent adults. Most
184
health facilities have standardized consent-to-photograph forms. If a patient is unconscious or
cognitively impaired, taking photographs without consent is generally viewed as ethically sound
because it is a noninvasive, painless intervention that has high potential to help a suspected abuse
victim.
When documenting the history and physical findings of child abuse and neglect, use the words
the child has given to describe how his or her injury occurred. Remember that the possibility arises
that the abuser may be accompanying the child. You will need to separate the child from the abuser
for the interview. If the child is nonverbal, use statements from caregivers. It is important to know
your employer/institutional protocol for obtaining a history in cases of suspected child
maltreatment. Some protocols may delay a full interview until it can be done by a forensically
trained interviewer.
185
Subjective Data
According to the latest guidelines published by the U.S. Preventive Services Task Force18 (USPSTF),
all women of childbearing age (14 to 46 years) should be screened for IPV. Screening should take
place regardless of whether the person has any signs of abuse or neglect. Early detection is key in
preventing long-term negative health outcomes associated with IPV. The USPSTF cites insufficient
evidence to recommend routine screening of elderly or vulnerable adults (physically or mentally
disabled). The USPSTF does not currently have recommendations on whether all children under the
age of 18 years should be screened for abuse in the primary care setting; however, the scope of the
problem is noted, and early community-based intervention, such as home visitation, is identified as
a potential preventive measure.
While the USPSTF recommends screening for certain populations, we will discuss screening for
every patient encountered in the health care setting. As a health care provider, you are a mandatory
reporter, and it is important that you understand how to screen and assess for potential violence.
Examiner Asks/Rationale
IPV, elder abuse, and child abuse will be discussed separately, with recommendations for screening as well as screening tools
identified in each section. It is important that you are familiar with the tools used in your facility so that you can screen for abuse
based on your facility's policy. In any case of suspected abuse, an open-ended question such as “Tell me what happened” can be
useful. In all cases, it is important to interview the victim separately from the potential perpetrator. Listen for cues of abuse, such as
explanations that don't match the injury or inability to keep the story straight. Frequently seeking care for suspicious injuries is
another potential indicator of abuse. Know your state laws, and do not hesitate to report suspected abuse per your state law and
institutional policy. Remember, you don't need to prove the abuse in order to file a report.
Intimate Partner Violence
It is important that you normalize the questions by asking every patient about IPV. While women are at higher risk for IPV, men
are also victims of abuse. Some clinicians express concern that screening everyone may cause unintended harm, but no research
evidence supports that concern.15
History questions, including prior hospitalizations, treatment for injuries, and delayed treatment, may give some cues, especially
if the person has been injured multiple times. If the person is seeing you for an injury, ask about the circumstances surrounding
the injury and make sure the circumstances match the type of damage.
Treat every patient the same in the screening process. Do not single out any gender or ethnic group.
Cumulative trauma has been associated with more severe mental and physical health problems.
It is imperative that you know the IPV screening tool used in your setting. Some hospitals have a single question (e.g., “Do you feel
safe at home?”), whereas others may use a standardized tool. The USPSTF reviewed IPV screening tools for sensitivity and specificity.
Those with the highest levels of sensitivity and specificity were Hurt, Insult, Threaten, Scream (HITS); Ongoing Abuse
Screen/Ongoing Violence Assessment Tool (OAS/OVAT); Slapped, Threatened, and Throw (STaT); Humiliation, Afraid, Rape, Kick
(HARK); Modified Childhood Trauma Questionnaire-Short Form (CTQ-SF); and Woman Abuse Screening Tool (WAST).18
Assessing risk for IPV and presence of IPV can aid in early intervention in the clinical setting. Early intervention may
result in fewer long-term physical and mental health consequences. Using a tool with high levels of sensitivity and
specificity will allow clinicians to better screen for and recognize clients who are victims of violence. Each of the
recommended tools is a brief questionnaire that can be administered in minutes.
HITS is a 4-item tool that asks clients to answer the following questions from never to frequently.27
How often does your partner:
1- Physically hurt you
2- Insult or talk down to you
3- Threaten you with harm
4- Scream or curse at you
Each question is scored from 0 (never) to 5 (frequently) and the answers are totaled. A score greater than 10 on the
HITS tool is indicative of IPV.
STaT is a 3-item tool that includes the following questions22:
1- Have you ever been in a relationship where your partner has pushed or slapped you?
2- Have you ever been in a relationship where your partner threatened you with violence?
3- Have you ever been in a relationship where your partner has thrown, broken, or punched things?
Answering yes to any of the STaT questions constitutes a positive screen for IPV.
The HITS tool can also be used to screen adolescents for teen dating violence. When screening an adolescent, make sure to use age-
appropriate language and provide examples. Instead of referring to IPV, ask about specifics (e.g., punched, hit, or slapped). Nurses
play a critical role in identification of teen dating violence. All teens who come to the ED with an injury should be screened.25
Approximately 10% of teens report being victims of physical violence and 10% report sexual victimization.
who experience dating violence are at higher risk for mental and physical health consequences. Early identification
and intervention is needed.
Elder Abuse and Neglect
The USPSTF did not recommend a specific screening for elder abuse; however, The Joint Commission, National Center on Elder
Abuse, National Academy of Sciences, and American Academy of Neurology all recommend routine screening. While validated
screening tools are available, insufficient evidence is available to suggest whether one tool should be recommended. The Elder
Abuse Suspicion Index (Fig. 7.3) has been validated in primary care and can be used with cognitively intact patients.12
By 2030, the elderly population in the United States is expected to top 30 million. With an increase in the number of
elderly patients, an increase in the number of elder abuse cases is expected.
186
7.3 (Copyright © 2006 M.J. Yaffe, M. Lithwick, & C. Wolfson.)
As with other populations, types of abuse may vary. In the elderly, it is important to consider financial or material abuse along with
physical, emotional, and sexual abuse. Elders are at risk for financial abuse, including theft, forcible transfer of property, and coercion
to steal assets.
Child Abuse and Neglect
Health care providers should monitor for signs of abuse and neglect during visits to the clinic or hospital. The primary health care
provider is in an ideal position to screen for and prevent child abuse and neglect. By providing anticipatory guidance, health care
providers can support caregivers of young children. During your contact with children, watch the interaction between the caregiver
and child. Does the child appear to trust the caregiver? Does the child appear anxious? Overly quiet?
Health care providers have contact with infants and children multiple times a year and are able to monitor the child's
development and interaction with caregivers.
The use of developmental screening tools can identify risk for abuse and provide a platform for educating the caregiver. When a
caregiver is aware of expected development and upcoming developmental changes (e.g., the normal periods of excessive crying in the
newborn period), they may be less likely to become frustrated with the child.
Screening tools allow the provider to identify whether normal developmental milestones are being met. Children who
are developmentally delayed are at higher risk for abuse.
For nonverbal children, subjective data will come from the caregiver. During the interview, be attentive to the interaction between the
caregiver and child. If an injury is reported or abuse is suspected, be mindful of whether the information provided surrounding the
injury/event matches what you observe clinically.
If the child is verbal, a history should be obtained away from the caregivers through open-ended questions or spontaneous
statements. It is important to remember that children may have suffered significant trauma yet respond only minimally to open-
ended questions. Keeping the questions short and using age-appropriate language and familiar words can help enrich the history
taking. Children older than 11 years can generally be expected to provide a history at the level of most adults.
Separating the caregiver from the child is a necessary part of screening for child abuse and neglect. The child needs to
feel safe answering the questions and may not be willing to answer truthfully if under the influence of a caregiver.
The medical history is an important part of screening for abuse and neglect in children. In addition to basic medical history questions,
you will want to ask specific questions related to hospitalization, recent injuries, and delay in seeking care. Consider including the
following questions: Has the child had previous hospitalizations or injuries? Does he or she suffer from any chronic medical
conditions?
Some medical conditions can mimic child abuse. Obtaining a thorough medical history is necessary to rule out a
medical condition that mimics abuse.
Does the child take any medication or have a condition that may cause easy bruising? Is there a history of substance abuse in the
family or any financial or social stressors in the home? What are the typical methods of discipline used in the home? Do you routinely
use any specific cultural practices to promote healing (e.g., cupping, coining)?
Certain cultural practices may leave bruises on the skin, and some are not considered effective unless bruising is
apparent
187
188
Objective Data
Normal Range of Findings/Abnormal Findings
A thorough head-to-toe examination is imperative for any patient with suspected or known abuse. A visual
examination of the entire body is necessary in order to document any lesions.
Keep in mind the following guidelines when documenting the physical examination:
• Bruise can be used interchangeably with contusion.
• Laceration is related to avulsion.
• Ecchymosis is related to (senile) purpura.
• Petechia is related to purpura.
• Rug burn is more accurately described as a friction abrasion.
• Incision can be used interchangeably with cut.
• Cut can be used interchangeably with sharp injury.
• Stab wounds are penetrating, deep, sharp injuries.
• Hematoma is a collection of blood that is often but not always caused by blunt-force trauma.
Many practitioners try to date bruises based on the color; however, there is no scientific evidence to support the
accurate dating of injuries based on color of the contusion.19 Some guidelines can help to determine if the
approximate age of the bruise is consistent with the history being provided by the patient and/or caregiver. A new
bruise is usually red and often develops a purple or purple-blue appearance 12 to 36 hours after blunt-force trauma.
The color of bruises (and ecchymoses) generally progress from purple-blue to bluish-green to greenish-brown to
brownish-yellow before fading away. The color of bruises is the same on all people, but skin color may increase or
decrease visibility of bruises.19
Document the size,
color, and pattern of
any bruises, but do
not try to determine
timing of the injury
based solely on the
color of the bruise.
Multiple factors can contribute to older adults bruising more readily or more severely than younger people.
Medications (e.g., aspirin, anticoagulants, nonsteroidal anti-inflammatory drugs) and abnormal blood values can
cause a person to bruise more easily. Nutritional supplements (e.g., garlic, ginkgo) also contribute to
hematologic complications, especially if the person is already taking a blood-thinning or platelet-altering
medication.
Any health evaluation for known or suspected elder abuse and neglect should include these baseline laboratory
tests: a complete blood count (CBC) with platelet level, basic blood chemistries (including blood urea nitrogen
[BUN], creatinine, protein, and albumin), serum liver function tests, a coagulation panel, and a urinalysis.
Infants and Children
A full visual inspection of children is necessary because clothing, diapers, socks, and long hair can hide significant
injuries.
Accidental bruising in healthy, active children is common, but infants who are not yet walking with support (e.g.,
cruising around furniture) typically should not have bruises. Bruising in infants who are not yet cruising, usually
infants younger than 9 months, should alert you to possible abusive mechanisms to the injury or an underlying
medical condition.
Although any area of the body can be injured intentionally, certain locations are more concerning for inflicted injury.
Bruising in atypical places, such as the buttocks, hands, feet, and abdomen, is exceedingly rare and should arouse
concern. In children younger than 4 years, bruising on the torso, ears, and neck and any bruising on a precruising
infant are significantly correlated with abuse in the absence of a compelling history.24 Any bruise that takes the
shape of an object is highly concerning for abuse. Bruising found in immobile children should raise your concern
and should be the basis for a comprehensive evaluation for abuse or an underlying medical condition.
Bruising in a
suspicious area of the
body without a
compelling history
warrants further
evaluation for abuse.
In a young child, a radiologic survey to look for occult injuries may be warranted. This includes a skeletal survey
(series of x-ray images of all bones) or a bone scan (nuclear medicine).
Radiographic images
that show multiple
fractures in various
stages of healing are
suspicious for abuse.
189
Abnormal Findings
Table 7.2
Abusive Burns
Immersion Injury Patterns
A, Immersion in hot water; note sparing of
the flexor creases. B, Immersion stocking
burn of an infant's foot. C, Immersion glove
burn of an infant's hand. D, Immersion
buttocks burn.
Pattern Burn Injury
A, Hair straightening iron burn on the
buttocks. B, Burn caused by a steam iron. C,
Burn caused by fork tines. D, Burn caused
by a lighter.
190
Cigarette Burns
These burns demonstrate classic abuse with
lesions in various stages of healing.
See Illustration Credits for source information.
Table 7.3
Suspicious Bruising
191
Fingers Belt Loop
Abusive bruise on the left cheek demonstrating the imprint of fingers. Bruising in the pattern of a belt loop.
Bruising and Petechiae
A and B, Bruising and petechiae of the pinna and
postauricular area consistent with a hand slap. C,
Bruising from a belt and belt buckle.
Nasal Fracture Thigh Bruises
Periorbital ecchymoses and fracture nasal bone. Inner thigh bruises on a woman with severe dementia.
The placement of bruises is suspicious for sexual abuse.
Defensive Wounds
Defensive wounds are often found on the hands and
forearms as the victim tries to protect his or her body
from the assailant.
192
Table 7.4
Signs of Neglect
Pressure Ulcers
Case of elder abuse showing moisture-
associated skin damage.
Table 7.5
Assessing Homicide Risk
Just over 55% of all female homicides are related to IPV, and over 11% of victims experienced violence in the month preceding the homicide.
Non-Hispanic black women and American Indian/Alaskan native women experience the highest rate of homicide.23 Failing to routinely assess
for IPV in medical settings is a missed opportunity for health care professionals to identify IPV and intervene to decrease the danger. The Danger
Assessment (DA) (Fig. 7.5) (http://www.dangerassessment.org/) begins with a calendar so that women can see for themselves how frequent and
severe the violence has become over the past year. The calendar is followed by a series of 20 yes/no items. Although there are no predetermined
cutoff scores on the DA, the more “yes” answers there are, the more serious the danger of the woman's situation.
193
http://www.dangerassessment.org/
7.5 Danger assessment. (Courtesy Jacquelyn C. Campbell.)
194
References
1. Asay SM, DeFrain J, Metzger M, et al. Implementing a strengths-based approach
to intimate partner violence worldwide. J Fam Violence. 2016;31:349–360.
2. Breiding MJ, et al. Intimate partner violence surveillance: Uniform definitions and
recommended data elements, Version 2.0. National Center for Injury Prevention and
Control, Centers for Disease Control: Atlanta, GA; 2015.
3. Centers for Disease Control and Prevention. Intimate partner violence:
Consequences.
https://www.cdc.gov/violenceprevention/intimatepartnerviolence/consequences.html
2017.
4. Centers for Disease Control and Prevention. Child abuse and neglect: Consequences.
https://www.cdc.gov/violenceprevention/childmaltreatment/consequences.html;
2017.
5. Centers for Disease Control and Prevention. Teen dating violence.
https://www.cdc.gov/violenceprevention/intimatepartnerviolence/teen_dating_violence.html
2017.
6. Child Welfare Information Gateway. Definitions of child abuse and neglect. U.S.
Department of Health and Human Services, Children's Bureau: Washington, DC;
2016.
7. Child Welfare Information Gateway. About CAPTA: A legislative history. U.S.
Department of Health and Human Services, Children's Bureau: Washington, DC;
2017.
8. Child Welfare Information Gateway. Child abuse and neglect fatalities 2015:
Statistics and interventions. U.S. Department of Health and Human Services,
Children's Bureau: Washington, DC; 2017.
9. Reference deleted in proofs.
10. Duffy M. Domestic violence and chronic health conditions: Are they linked? National
Center for Health Research. http://www.center4research.org/domestic-violence-
chronic-health-conditions-linked/; 2017.
11. Hall J, Karch DL, Crosby A. Uniform definitions and recommended core data elements
for use in elder abuse surveillance, Version 1.0. National Center for Injury Prevention
and Control, Centers for Disease Control: Atlanta, GA; 2016.
12. Hoover RM, Polson M. Detecting elder abuse and neglect: Assessment and
intervention. Am Fam Physician. 2014;89:453–460.
13. Killion CM. Cultural healing practices that mimic child abuse. Ann Forensic Res
Anal. 2017;4:1042.
14. Marrs Fuchsel CL, Hysjulien B. Exploring a domestic violence intervention
curriculum for immigrant Mexican women in a group setting. Soc Work Groups.
2013;36(4):304–320.
15. Miller E, McCaw B, Humphreys BL, et al. Integrating intimate partner violence
assessment and intervention into healthcare in the United States: A systems
approach. J Womens Health. 2015;24:92–99.
16. Reference deleted in proofs.
17. Modi MN, Palmer S, Armstrong A. The role of Violence Against Women Act in
addressing intimate partner violence: A public health issue. J Womens Health.
2014;23:253–259.
18. Moyer VA. Clinical guidelines: Screening for intimate partner violence and abuse
of elderly and vulnerable adults: U.S. Preventive Services Task Force
Recommendation Statement. Ann Intern Med. 2013;158:478–486.
19. Nash KR, Sheridan DJ. Can one accurately date a bruise: State of the science. J
195
https://www.cdc.gov/violenceprevention/intimatepartnerviolence/consequences.html
https://www.cdc.gov/violenceprevention/childmaltreatment/consequences.html
https://www.cdc.gov/violenceprevention/intimatepartnerviolence/teen_dating_violence.html
http://www.center4research.org/domestic-violence-chronic-health-conditions-linked/
Forensic Nurs. 2009;5:31–37.
20. National Coalition Against Domestic Violence. Domestic violence national statistics.
www.ncadv.org; 2015.
21. National Council on Aging. Elder abuse facts. https://www.ncoa.org/public-policy-
action/elder-justice/elder-abuse-facts/; 2017.
22. Paranjape A, Liebschutz J. STaT: A three-question screen for intimate partner
violence. J Womens Health. 2003;12:233–239.
23. Petrosky E, Blair JM, Betz CJ, et al. Racial and ethnic differences in homicides of
adult women and the role of intimate partner violence—United States, 2003-2014.
MMWR Morb Mortal Wkly Rep. 2017;66:741–746.
24. Pierce MC, Kaczor K, Aldridge S, et al. Bruising characteristics discriminating
physical child abuse from accidental trauma. Pediatrics. 2010;125(1):67–74.
25. Potera C. Screening teens for dating violence in EDs. Am J Nurs. 2014;114(10):14.
26. Rana S. Immigrant women and domestic violence. https://vawnet.org/sc/immigrant-
women-and-domestic-violence; 2013.
27. Sherin KM. The HITS Tool. http://thehitstool.com; 2017.
28. Sherin KM, Sinacore JM, Li XQ, et al. HITS: A short domestic violence screening
tool for use in a family practice setting. Fam Med. 1998;30:508–512.
29. U.S. Department of Health & Human Services, Administration for Children and
Families, Administration on Children, Youth and Families, Children's Bureau.
Child Maltreatment 2015. http://www.acf.hhs.gov/programs/cb/research-data-
technology/statistics-research/child-maltreatment; 2017.
30. US Department of Veterans Affairs. Sexual assault against females.
https://www.ptsd.va.gov/professional/trauma/other/sexual_assault_against_females.asp
2016.
31. Vagi KJ, Olsen EO, Basile KC, et al. Teen dating violence (physical and sexual)
among US high school students: Findings from the 2013 National Youth Risk
Behavior Survey. JAMA Pediatr. 2015;169:474–482.
32. World Health Organization. Changing cultural and social norms that support violence.
http://www.who.int/violence_injury_prevention/violence/norms ; 2009.
196
http://www.ncadv.org
https://www.ncoa.org/public-policy-action/elder-justice/elder-abuse-facts/
https://vawnet.org/sc/immigrant-women-and-domestic-violence
http://thehitstool.com
http://www.acf.hhs.gov/programs/cb/research-data-technology/statistics-research/child-maltreatment
https://www.ptsd.va.gov/professional/trauma/other/sexual_assault_against_females.asp
http://www.who.int/violence_injury_prevention/violence/norms
U N I T 2
Approach to the Clinical Setting
OUTLINE
Chapter 8 Assessment Techniques and Safety in the Clinical Setting
Chapter 9 General Survey and Measurement
Chapter 10 Vital Signs
Chapter 11 Pain Assessment
Chapter 12 Nutrition Assessment
197
C H A P T E R 8
198
Assessment Techniques and Safety in the
Clinical Setting
Cultivating Your Senses
The physical examination requires you to develop technical skills and a knowledge base. The
technical skills are the tools to gather data. You use your senses—sight, smell, touch, and hearing—
to gather data during the physical examination (Fig. 8.1). The skills requisite for the physical
examination are inspection, palpation, percussion, and auscultation. They are performed one at a
time and typically in this order.
8.1
Inspection
Inspection is concentrated watching. It is close, careful scrutiny, first of the individual as a whole
and then of each body system. Inspection begins the moment you first meet the person and develop
a “general survey.” Specific data to consider for the general survey are presented in Chapter 9. Your
initial impression of the person can be helpful as you proceed through your assessment. Something
as simple as a greeting and handshake can yield important assessment data.2 As you proceed
through the examination, start the assessment of each body system with inspection.
Inspection always comes first. Initially you may feel embarrassed “staring” at the person without
also “doing something.” A focused inspection takes time and yields a surprising amount of data.
Train yourself not to rush through inspection by holding your hands behind your back.
Learn to use each person as his or her own control, and compare the right and left sides of the
body. The two sides are nearly symmetric. Inspection requires good lighting, adequate exposure,
and occasional use of certain instruments (otoscope, ophthalmoscope, penlight, nasal and vaginal
specula) to enlarge your view.
Palpation
Palpation follows and often confirms what you noted during inspection. Palpation applies your
sense of touch to assess the following factors: texture; temperature; moisture; organ location and
size; and any swelling, vibration or pulsation, rigidity or spasticity, crepitation, presence of lumps
or masses, and presence of tenderness or pain. Different parts of the hands are best suited for
assessing different factors:
• Fingertips—Best for fine tactile discrimination, as of skin texture,
swelling, pulsation, and determining presence of lumps
199
• A grasping action of the fingers and thumb—To detect the
position, shape, and consistency of an organ or mass
• The dorsa (backs) of hands and fingers—Best for determining
temperature because the skin is thinner than on the palms
• Base of fingers (metacarpophalangeal joints) or ulnar surface of
the hand—Best for vibration
Your palpation technique should be slow and systematic, calm and gentle. Warm your hands by
kneading them together or holding them under warm water. Identify any tender areas and palpate
them last.
Start with light palpation to detect surface characteristics and to accustom the person to being
touched. Then perform deeper palpation. Keep in mind that the person needs to be relaxed to allow
adequate palpation. You might find it helpful to encourage the person to use relaxation techniques
such as imagery or deep breathing. With deep palpation (as for abdominal contents), intermittent
pressure is better than one long, continuous palpation. Avoid any situation in which deep palpation
could cause internal injury or pain.
Bimanual palpation requires the use of both of your hands to envelop or capture certain body
parts or organs such as the kidneys, uterus, or adnexa for more precise delimitation (see Chapters
22 and 27).
Percussion
Percussion is tapping the person's skin with short, sharp strokes to assess underlying structures.
The strokes yield an audible vibration and a characteristic sound that depicts the location, size, and
density of the underlying organ. While x-ray images are more accurate than percussion, they are
not always available. Your hands are always available, are easily portable, and give instant
feedback. Percussion has the following uses:
• Mapping out the location and size of an organ by exploring where
the percussion note changes between the borders of an organ and
its neighbors
• Signaling the density (air, fluid, or solid) of a structure by a
characteristic note
• Detecting an abnormal mass if it is fairly superficial; the
percussion vibrations penetrate about 5 cm (2 inches) deep—a
deeper mass would give no change in percussion
• Eliciting a deep tendon reflex using the percussion hammer
The Stationary Hand
Hyperextend the middle finger (the pleximeter) and place its distal joint and tip firmly against the
person's skin. Avoid placement over the ribs, scapulae, and other bony prominences. Percussing
over a bone yields no data because it always sounds “dull.” Lift the rest of the stationary hand up
off the person's skin (Fig. 8.2). A hand resting on the skin will dampen the produced vibrations,
making them difficult to interpret. Check your technique to assure that only the distal joint and tip
of your middle finger are touching the person.
200
8.2
The Striking Hand
Use the middle finger of your dominant hand as the striking finger (the plexor) (Fig. 8.3). Hold your
forearm close to the skin surface, with your upper arm and shoulder steady. Scan your muscles to
make sure that they are steady but not rigid. The action is all in the wrist, and it must be relaxed.
Spread your fingers, swish your wrist, and bounce your middle finger off the stationary one. Aim
for just behind the nail bed or at the distal interphalangeal joint; the goal is to hit the portion of the
finger that is pushing the hardest into the skin surface. Flex the striking finger so that its tip, not the
finger pad, makes contact. It hits directly at right angles to the stationary finger.
201
8.3
Percuss 2 times in each location using even, staccato blows. Lift the striking finger off quickly; a
resting finger dampens vibrations. Then move to a new body location and repeat, keeping your
technique even. The force of the blow determines the loudness of the note. You do not need a very
loud sound; use just enough force to achieve a clear note. The thickness of the person's body wall
will be a factor. You need a stronger percussion stroke for persons with obese or very muscular
body walls.
Production of Sound
All sound results from vibration of some structure. Percussing over a body structure causes
vibrations that produce characteristic waves and that are heard as “notes” (Table 8.1), which are
differentiated by the following components: (1) amplitude (or intensity), a loud or soft sound; (2)
pitch (or frequency), the number of vibrations per second; (3) quality (timbre), a subjective
difference caused by the distinctive overtones of a sound; and (4) duration, the length of time the
note lingers.
TABLE 8.1
Characteristics of Percussion Notes
AMPLITUDE PITCH QUALITY DURATION SAMPLE LOCATION
Resonant Medium-loud Low Clear, hollow Moderate Over normal lung tissue
Hyperresonant Louder Lower Booming Longer Normal over child's lung
Abnormal in the adult, over lungs
with increased amount of air as in
emphysema
Tympany Loud High Musical and drumlike
(like the kettledrum)
Sustained
longest
Over air-filled viscus (e.g., the stomach,
the intestine)
202
Dull Soft High Muffled thud Short Relatively dense organ as liver or spleen
Flat Very soft High A dead stop of sound,
absolute dullness
Very short When no air is present, over thigh
muscles or bone or over tumor
A basic principle is that a structure with relatively more air (e.g., the lungs) produces a louder,
deeper, and longer sound because it vibrates freely, whereas a denser, more solid structure (e.g., the
liver) gives a softer, higher, shorter sound because it does not vibrate as easily. Although Table 8.1
describes five “normal” percussion notes, variations occur in clinical practice. The “note” you hear
depends on the nature of the underlying structure, the thickness of the body wall, and your
technique.
Auscultation
Auscultation is listening to sounds produced by the body, such as the heart and blood vessels and
the lungs and abdomen. You have probably already heard certain body sounds with your ear alone
(e.g., the gurgling of a hungry stomach). However, most body sounds are very soft and must be
channeled through a stethoscope for you to evaluate them. The stethoscope does not magnify
sound but does block out extraneous room sounds. Of all the equipment you use, the stethoscope
quickly becomes a very personal instrument. Take time to learn its features and to fit one
individually to your needs.
The fit and quality of the stethoscope are important. You cannot assess what you cannot hear
through a poor instrument. The slope of the earpiece should point forward toward your nose. This
matches the natural slope of your ear canal and efficiently blocks out environmental sound. If
necessary, twist the earpieces to parallel the slope of your ear canals. The earpieces should fit
snugly, but if they hurt, they are inserted too far. Adjust the tension and experiment with different
rubber or plastic earplugs to achieve the most comfort. The tubing should be of thick material, with
an internal diameter of 4 mm ( in), and about 36 to 46 cm (14 to 18 in) long. Longer tubing may
distort the sound.
Choose a stethoscope with two endpieces—a diaphragm and a bell (Fig. 8.4). You will use the
diaphragm most often because its flat edge is best for high-pitched sounds—breath, bowel, and
normal heart sounds. Hold the diaphragm firmly against the person's skin, firm enough to leave a
slight ring afterward. The bell endpiece has a deep, hollow, cuplike shape. It is best for soft, low-
pitched sounds such as extra heart sounds or murmurs. Hold it lightly against the person's skin,
just enough that it forms a perfect seal. Holding it any harder causes the person's skin to act as a
diaphragm, obliterating the low-pitched sounds.
203
8.4 Stethoscope diaphragm (left) and bell (right).
Some newer stethoscopes have one endpiece with a “tunable diaphragm.” This enables you to
listen to both low- and high-frequency sounds without rotating the endpiece. For low-frequency
sounds (traditional bell mode), hold the endpiece very lightly on the skin; for high-frequency
sounds (traditional diaphragm mode), press the endpiece firmly on the skin. Make sure that you
familiarize yourself with your stethoscope to assure proper use.
Before you can evaluate body sounds, you must eliminate any confusing artifacts:
• Any extra room noise can produce a “roaring” in your
stethoscope; therefore the room must be quiet.
• Keep the examination room warm, and warm your stethoscope.
If the person starts to shiver, the involuntary muscle contractions
could drown out other sounds. Clean your stethoscope endpiece
with an alcohol wipe, and warm it by rubbing the endpiece in your
palm.
• The friction on the endpiece from a man's hairy chest causes a
crackling sound that mimics an abnormal breath sound called
crackles. To minimize this problem, wet the hair before auscultating
the area.
• Never listen through a gown (Fig. 8.5). Even though you see this
on television, listening through clothing creates artifactual sound
and muffles any diagnostically valuable sound from the heart or
lungs. Therefore reach under a gown to listen, and take care that
no clothing rubs on the stethoscope.
204
8.5
• Finally avoid your own “artifact,” such as breathing on the
tubing or the “thump” from bumping the tubing. Jewelry such as
earrings and necklaces can also cause artifact.
Auscultation is a skill that beginning examiners are eager to learn but one that is difficult to
master. First you must learn the wide range of normal sounds. Once you can recognize normal
sounds, you can distinguish the abnormal and “extra” sounds. Be aware that in some body
locations you may hear more than one sound, which can be confusing. You need to listen selectively
to only one thing at a time. As you listen, ask yourself: What am I actually hearing? What should I be
hearing at this spot?
These technical skills will help you gather data to add to your knowledge base and previous
experience. A sturdy knowledge base enables you to look for rather than merely look at. The
chapters that follow present the specific content for each body system and will help you determine
what you are looking for.
Setting
The examination room should be warm and comfortable, quiet, private, and well lit. When possible,
stop any distracting noises such as humming machinery, radio or television, or talking that could
make it difficult to hear body sounds. Your time with the individual should be secure from
interruptions from other health care personnel.
Lighting with natural daylight is best, although it is often not available; artificial light from two
sources suffices and prevents shadows. A wall-mounted or gooseneck stand lamp is needed for
high-intensity lighting. This provides tangential lighting (directed at an angle), which highlights
pulsations and body contours better than perpendicular lighting.
Position the examination table so that both sides of the person are easily accessible (Fig. 8.6). The
table should be at a height at which you can stand without stooping and should be equipped to
raise the person's head up to 45 degrees. A roll-up stool is used for the sections of the examination
for which you must be sitting. A bedside stand or table is needed to lay out all your equipment.
205
8.6
Equipment
During the examination you do not want to be searching for equipment or need to leave the room
to find an item. Have all your equipment easily accessible and laid out in an organized fashion (Fig.
8.7). The following items are usually needed for a screening physical examination:
8.7
• Platform scale with height attachment
• Sphygmomanometer
• Stethoscope with bell and diaphragm endpieces
• Thermometer
• Pulse oximeter (in hospital setting)
• Flashlight or penlight
206
• Otoscope/ophthalmoscope
• Tuning fork
• Nasal speculum (if a short, broad speculum is not included with
the otoscope)
• Tongue depressor
• Pocket vision screener
• Skin-marking pen
• Flexible tape measure and ruler marked in centimeters
• Reflex hammer
• Sharp object (split tongue blade)
• Cotton balls
• Bivalve vaginal speculum (for female persons)
• Clean gloves
• Alcohol wipes
• Hand sanitizer
• Materials for cytologic study (if applicable)
• Lubricant
• Fecal occult blood test materials
Most of the equipment is described as it comes into use throughout the text. However, consider
these introductory comments on the otoscope and ophthalmoscope.
The otoscope funnels light into the ear canal and onto the tympanic membrane. The base serves
both as the power source by holding a battery and as the handle. To attach the head, press it down
onto the male adaptor end of the base and turn clockwise until you feel a stop. To turn the light on,
press the red button rheostat down and clockwise. (Always turn it off after use to increase the life of
the bulb and battery.) Five specula, each a different size, are available to attach to the head (Fig. 8.8).
The short, broad speculum is for viewing the nares. Choose the largest one that will fit comfortably
into the person's ear canal. See Chapter 16 for technique on use of the otoscope.
207
8.8 Otoscope.
The ophthalmoscope illuminates the internal eye structures. Its system of lenses and mirrors
enables you to look through the pupil at the fundus (background) of the eye, much like looking
through a keyhole at a room beyond. The ophthalmoscope head attaches to the base male adaptor
just as the otoscope head does (Fig. 8.9). The head has five different parts:
208
8.9 Ophthalmoscope.
1. Viewing aperture, with five different apertures
2. Aperture selector dial on the front
3. Mirror window on the front
4. Lens selector dial
5. Lens indicator
Select the aperture to be used, most often the small spot for undilated pupils or the large full spot
for dilated pupils.
Rotating the lens selector dial brings the object into focus. The lens indicator shows a number, or
diopter, that indicates the value of the lens in position. The black numbers indicate a positive lens,
from 0 to +40. The red numbers indicate a negative lens, from 0 to −20. The ophthalmoscope can
compensate for myopia (nearsightedness) or hyperopia (farsightedness) but does not correct for
astigmatism. See Chapter 15 for details on how to hold the instrument, how to use the instrument,
and what to inspect.
The following equipment occasionally will be used, depending on the individual's needs:
goniometer to measure joint range of motion, Doppler sonometer to augment pulse or blood
pressure measurement, pain rating scale (in numbers or faces), monofilament to test sensation in the
foot, and bladder scanner to assess urine retention.
For a child you also will need appropriate pediatric-size endpieces for stethoscope and otoscope
specula, materials for developmental assessment, age-appropriate toys, and a pacifier for an infant.
A Clean Field
Do not let your stethoscope become a staph-oscope! Stethoscopes and other equipment that are
frequently used on many people are common vehicles for transmission of infection. Clean your
stethoscope endpiece with an alcohol wipe before and after every person. The best routine is to
combine stethoscope cleaning with every episode of hand hygiene.
Designate a “clean” versus a “used” area for handling your equipment. You can use two separate
tables (e.g., an over-bed table and a side table) or use two separate areas of the same table.
Distinguish the clean area by one or two disposable paper towels. On the towels place all the new
or newly alcohol-swabbed equipment that you will use for this person (e.g., your stethoscope
endpieces, the reflex hammer, ruler). As you proceed through the examination, pick up each piece
of equipment from the clean area; after use on the person, relegate it to the used area or (as in the
case of tongue blades, gloves) throw it directly in the trash.
A Safer Environment
In addition to monitoring the cleanliness of your equipment, take all steps to avoid any possible
transmission of infection between persons or between person and examiner (Table 8.2). A health
care–associated (nosocomial) infection is a hazard because hospitals have sites that are reservoirs
for virulent microorganisms. Some of these microorganisms (such as methicillin-resistant
Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and multidrug-resistant
tuberculosis) are resistant to antibiotics and difficult to treat.
TABLE 8.2
Standard Precautions for Use With All Persons
STANDARD PRECAUTIONS are based on the principle that all blood, body fluids, secretions, excretions (except sweat), nonintact skin,
and mucous membranes may contain transmissible infectious agents. Precautions apply to all patients, regardless of suspected or
confirmed infection status, and in any setting in which health care is delivered. Components are:
• Hand hygiene. (1) Avoid unnecessary touching of surfaces in close proximity to the patient. (2) When hands are visibly dirty,
contaminated with proteinaceous material, or visibly soiled with blood or body fluids, wash them with soap and water. (3) If not visibly
soiled, decontaminate hands with an alcohol-based hand rub. Perform hand hygiene: (a) before having direct contact with patients; (b)
after contact with blood, body fluids or excretions, mucous membranes, nonintact skin, or wound dressings; (c) after contact with a
patient's intact skin (e.g., taking a pulse or blood pressure or lifting a patient); (d) after contact with medical equipment in the immediate
vicinity of the patient; (e) after removing gloves.
• Use of gloves, gown, mask, eye protection, or face shield. (1) Wear gloves when you anticipate that contact with blood or other
potentially infectious materials, mucous membranes, nonintact skin, or potentially contaminated intact skin (e.g., patient incontinent of
209
stool or urine) could occur. (2) Wear a gown to protect skin and clothing when you anticipate contact with blood, body fluids, secretions,
or excretions. (3) Use mouth, nose, and eye protection to protect the mucous membranes during procedures that are likely to generate
splashes or sprays of blood, body fluids, secretions, and excretions (e.g., suctioning a patient).
• Respiratory hygiene/cough etiquette is targeted at patients and accompanying persons with undiagnosed transmissible respiratory
infections. Elements include: (1) education of staff, patients, and visitors; (2) posted signs in language(s) appropriate to the population;
(3) source control measures (e.g., covering the mouth/nose with a tissue when coughing and promptly disposing of used tissues, using
surgical masks on the coughing person); (4) hand hygiene after contact with respiratory secretions; and (5) spatial separation of >3 feet
from people with respiratory infections in common waiting areas.
Adapted from Centers for Disease Control and Prevention. (2007). Standard precautions—excerpt from the guidelines for isolation
precautions: preventing transmissions of infectious agents in healthcare settings. (2007).
https://www.cdc.gov/infectioncontrol/basics/standard-precautions.html.
The single most important step to decrease the risk of microorganism transmission is to wash
your hands promptly and thoroughly: (1) before and after every physical patient encounter; (2)
after contact with blood, body fluids, secretions, and excretions; (3) after contact with any
equipment contaminated with body fluids; and (4) after removing gloves (see Table 8.2). Using
alcohol-based hand sanitizer takes less time than soap-and-water handwashing; it also kills more
organisms more quickly and is less damaging to the skin because of emollients added to the
product. Alcohol is highly effective against both gram-positive and gram-negative bacteria;
Mycobacterium tuberculosis; and most viruses, including hepatitis B and C viruses, HIV, and
enteroviruses.1 Rub all hand surfaces with 3 to 5 mL of alcohol for 20 to 30 seconds. Use the
mechanical action of soap-and-water handwashing (Fig. 8.10) when hands are visibly soiled and
when the person is infected with spore-forming organisms (e.g., Clostridium difficile and
noroviruses).1
8.10 (Zakus, 2001.)
Wear gloves when the potential exists for contact with any body fluids (e.g., blood, mucous
membranes, body fluids, drainage, open skin lesions). However, wearing gloves is not a protective
substitute for washing hands because gloves may have undetectable holes or become torn during
use, or hands may become contaminated as gloves are removed. Wear a gown, mask, and
protective eyewear when the potential exists for any blood or body fluid spattering (e.g., suctioning,
arterial puncture).
The Clinical Setting
General Approach
Consider your emotional state and that of the person being examined. The person may be anxious
about being examined by a stranger and about the unknown outcome of the examination. Try to
reduce any anxiety so that the data will more closely describe the person’s natural state. Anxiety can
be reduced by an examiner who is confident and self-assured, considerate, and unhurried.
Usually a beginning examiner feels anything but self-assured! Most worry about technical skill,
missing something significant, or forgetting a step. Many are embarrassed themselves about
encountering a partially dressed individual. All these fears are natural and common. The best way
to minimize anxiety is by practicing on a healthy willing subject, usually a fellow student. You have
to feel comfortable with your motor skills before you can absorb what you are actually seeing or
210
https://www.cdc.gov/infectioncontrol/basics/standard-precautions.html
hearing in a “real” patient. This comes with practice under the guidance of an experienced
practitioner and in an atmosphere in which it is acceptable to make mistakes and ask questions.
Your subject should “act like a patient” so that you can deal with the “real” situation while still in a
safe setting. After you feel comfortable in the laboratory setting, accompany an experienced
practitioner as he or she examines an actual patient so that you can observe an experienced
examiner.
Hands On
With preparation it is possible to interact with your own patient in a confident manner. Begin by
measuring the person’s height, weight, blood pressure, temperature, pulse, and respirations (see
Chapters 9 and 10). If needed, measure visual acuity at this time using the Snellen eye chart (see
Chapter 15). All of these are familiar, relatively nonthreatening actions; they will gradually
accustom the person to the examination. Sometimes an icebreaker about an irrelevant topic will
help the person feel that he or she is seen as an individual. You might say, “Interesting cap. Does
that mean you are a baseball fan?” or “I see you are from Michigan. How was the winter there?”
These irrelevant openers signal that you have shared experiences and also that you are willing to
have a conversation—a good warm-up for the examination data and shared decision making that
come next.4
Then ask the person to change into an examining gown, leaving his or her underwear on. This
will feel more comfortable, and the underwear can easily be removed just before the genital
examination. Unless your assistance is needed, leave the room as the person undresses. Teens can
remain in street clothes.
As you reenter the room, clean your hands in the person’s presence. This indicates that you are
protective of this person and are starting fresh for him or her. Explain each step in the examination
and how the person can cooperate. Encourage the person to ask questions. Keep your own
movements slow, methodical, and deliberate.
Begin by touching the person’s hands, checking skin color, nail beds, and metacarpophalangeal
joints (Fig. 8.11; see Chapters 13 and 23). Again this is a less threatening way to ease a person into
being touched. Most people are used to having relative strangers touch their hands.
8.11
As you proceed through the examination, avoid distractions and concentrate on one step at a
time. The sequence of the steps may differ, depending on the age of the person and your own
preference. However, you should establish a system that works for you and stick to it to avoid
omissions. Organize the steps so that the person does not change positions too often. Although
211
proper exposure is necessary, use additional drapes to maintain the person’s privacy and prevent
chilling.
Do not hesitate to write out the examination sequence and refer to it as you proceed. The person
will accept this as quite natural if you explain that you are making brief notations to ensure
accuracy. Many agencies use a form that is printed or computerized, depending on the
documentation system. You will find that you will glance at the form less and less as you gain
experience. Even with a form, you sometimes may forget a step in the examination. When you
realize this, perform the maneuver in the next logical place in the sequence. (See Chapter 28 for the
sequence of steps in the complete physical examination.)
As you proceed through the examination, occasionally offer some brief teaching about the
person’s body. For example, you might say, “Everyone has two sounds for each heartbeat,
something like this—lub-dup. Your own beats sound healthy and normal.” Do not do this with
every single step or you will be hard pressed to make a comment when you do come across an
abnormality. But some sharing of information builds rapport and increases the person’s confidence
in you as an examiner. It also gives the person a little more control in a situation in which it is easy
to feel completely helpless.
At some point you will want to linger in one location to concentrate on some complicated
findings. To avoid anxiety, tell the person, “I always listen to heart sounds on a number of places on
the chest. Just because I am listening a long time doesn’t necessarily mean that anything is wrong.”
And it follows that sometimes you will discover a finding that may be abnormal and you want
another examiner to double-check. You need to give the person some information, yet you should
not alarm him or her unnecessarily. Say something like, “I don’t have a complete assessment of
your heart sounds. I want Stephanie to listen to you, too.”
At the end of the examination, summarize your findings and share the necessary information
with the person. Thank him or her for the time spent. In a hospital setting, apprise the person of
what is scheduled next. Before you leave a hospitalized patient, lower the bed to reduce the risk for
falls; make the person comfortable and safe; return the bedside table, television, or any equipment
to the way it was originally; and make sure the call button is available.
212
Developmental Competence
Children are different from adults—not only in size, but also in their overall development.
Children’s bodies grow in a predictable pattern that is assessed during the physical examination.
However, their behavior is also different. Behavior grows and develops through predictable stages,
just as the body does.
With all children the goal is to increase their comfort in the setting. This approach reveals their
natural state as much as possible and will give them a more positive memory of health care
providers. Remember that a “routine” examination is anything but routine to the child. You can
increase his or her comfort by attending to the following developmental principles and approaches.
The order of the developmental stages is more meaningful than the exact chronologic age. Each child
is an individual and will not fit exactly into one category. For example, if your efforts to “play
games” with the preschooler are rebuffed, modify your approach to the security measures used
with the toddler. For more detailed information on pediatric assessment and communication in the
health care setting, please refer to Wong’s Essentials of Pediatric Nursing (Hockenberry, Wilson, &
Rodgers, 2017).3
The Infant
Erikson defines the major task of infancy as establishing trust. An infant is completely dependent
on the caregiver for his or her basic needs. If these needs are met promptly and consistently, the
infant feels secure and learns to trust others.
Position
• The caregiver should be present to understand normal growth
and development and for the child’s feeling of security.
• Place the neonate or young infant flat on a padded examination
table (Fig. 8.12). The infant also may be held against the caregiver’s
chest for some steps.
8.12
• Once the baby can sit without support (around 6 months), as
213
much of the examination as possible should be performed while
the infant is in the caregiver’s lap.
• By 9 to 12 months the infant is acutely aware of the
surroundings. Anything outside the infant’s range of vision is
“lost”; thus the caregiver must be in full view.
Preparation
• Timing should be 1 to 2 hours after feeding, when the baby is not
too drowsy or too hungry.
• Maintain a warm environment. A neonate may require an
overhead radiant heater.
• An infant will not object to being nude. Have the caregiver
remove outer clothing, but leave a diaper on.
• An infant does not mind being touched, but make sure that your
hands and stethoscope endpiece are warm.
• Use a soft, crooning voice during the examination; the baby
responds more to the feeling in the tone of the voice than to what
is actually said.
• An infant likes eye contact; lock eyes from time to time.
• Smile; a baby prefers a smiling face to a frowning one. Often
beginning examiners are so absorbed in their technique that they
look serious or stern. Be mindful of facial expressions and take
time to play.
• Keep movements smooth and deliberate, not jerky.
• Use a pacifier for crying or during invasive steps.
• Offer brightly colored toys for a distraction when the infant is
fussy.
• Let an older baby touch the stethoscope or tongue blade.
Sequence
• Seize the opportunity with a sleeping baby to listen to heart,
lung, and abdominal sounds first.
• Perform least distressing steps first. See the sequence in Chapter
29. Save the invasive steps of examination of the eye, ear, nose, and
throat until last.
• If you elicit the Moro or “startle” reflex, do it at the end of the
examination because it may cause the baby to cry.
The Toddler
This is Erikson’s stage of developing autonomy. However, the need to explore the world and be
independent is in conflict with the basic dependency on the caregiver. This often results in
214
frustration and negativism. The toddler may be difficult to examine; do not take this personally.
Because he or she is acutely aware of the new environment, the toddler may be frightened and cling
to the caregiver (Fig. 8.13). The toddler also has fear of invasive procedures and dislikes being
restrained.
8.13
Position
• The toddler should be sitting up on the caregiver’s lap for all of
the examination. When he or she must be supine (as in the
abdominal examination), move chairs to sit knee-to-knee with the
caregiver. Have the toddler lie in the caregiver’s lap with his or her
legs in your lap.
• Enlist the aid of a cooperative caregiver to help position the
toddler during invasive procedures such as using the otoscope or
taking a rectal temperature.
Preparation
• Children 1 or 2 years of age can understand symbols; thus a
security object such as a special blanket or teddy bear is helpful.
• Begin by greeting the child and the accompanying caregiver by
name, but with a child 1 to 6 years old focus more on the caregiver.
By essentially “ignoring” the child at first, you allow him or her to
adjust gradually and size you up from a safe distance. Then turn
your attention gradually to the child, at first to a toy or object the
child is holding or perhaps to compliment a dress, the hair, or
what a big girl or boy the child is. If the child is ready, you will
note these signals: eye contact with you, smiling, talking with you,
or accepting a toy or a piece of equipment.
215
• A 2-year-old child does not like to take off his or her clothes;
have the caregiver undress the child one part at a time.
• Children 1 or 2 years of age like to say “No.” Do not offer a
choice when there really is none. Avoid saying, “May I listen to
your heart now?” When the 1- or 2-year-old child says “No” and
you go ahead and do it anyway, you lose trust. Instead use clear,
firm instructions in a tone that expects cooperation, “Now it is
time for you to lie down so I can check your tummy.”
• Also, 1- or 2-year-old children like to make choices. When
possible, enhance autonomy by offering the limited option: “Shall I
listen to your heart next or your tummy?”
• Demonstrate the procedures on the caregiver.
• Praise the child when he or she is cooperative.
Sequence
• Collect some objective data during the history, which is a less
stressful time. While you are focusing on the caregiver, note the
child’s gross motor and fine motor skills and gait. A great deal of
information can be gained through watching a child.
• Begin with “games” such as the Denver II test or cranial nerve
testing.
• Start with nonthreatening areas. Save distressing procedures
such as examination of the head, ear, nose, or throat for last.
The Preschool Child
The child at this stage displays developing initiative. The preschooler takes on tasks independently,
plans the tasks, and sees them through. A child of this age is often cooperative, helpful, and easy to
involve. However, he or she may have fantasies and see illness as punishment for being “bad.” The
concept of body image is limited. The child fears any body injury or mutilation; therefore he or she
will recoil from invasive procedures (e.g., tongue blade, rectal temperature, injection, and
venipuncture).
Position
• With a 3-year-old child the caregiver should be present and may
hold the child on his or her lap.
• A 4- or 5-year-old child usually feels comfortable on the Big Girl
or Big Boy (examining) table with the caregiver present.
Preparation
• A preschooler can talk. Verbal communication becomes helpful
now, but remember that the child’s understanding is still limited.
Use short, simple explanations.
216
• The preschooler is usually willing to undress. Leave underpants
on until the genital examination.
• Talk to the child and explain the steps in the examination
exactly.
• Do not allow a choice when there is none.
• As with the toddler, enhance the autonomy of the preschooler by
offering choice when possible.
• Allow the child to play with equipment to reduce fears (Fig.
8.14).
8.14
• A preschooler likes to help; have the child hold the stethoscope
for you.
• Use games. Have the child “blow out” the light on the penlight
as you listen to the breath sounds. Or pretend to listen to the heart
sounds of the child’s teddy bear first. One technique that is
absorbing to a preschooler is to trace his or her shape on the
examining table paper. You can comment on how big the child is,
then fill in the outline with a heart or stomach and listen to the
paper doll first. After the examination the child can take the paper
doll home as a souvenir.
• Use a slow, patient, deliberate approach. Do not rush.
• During the examination give the preschooler needed feedback
and reassurance: “Your tummy feels just fine.”
• Compliment the child on his or her cooperation.
217
Sequence
• Examine the thorax, abdomen, extremities, and genitalia first.
Although the preschooler is usually cooperative, continue to assess
head, eye, ear, nose, and throat last.
The School-Age Child
During the school-age period the major task of the child is to develop industry. The child is
developing basic competency in school and social networks and desires the approval of caregivers
and teachers. When successful, the child has a feeling of accomplishment. During the examination
the child is cooperative and interested in learning about the body. Language is more sophisticated
now, but do not overestimate and treat the school-age child as a small adult. The child’s level of
understanding does not match that of his or her speech.
Position
• The school-age child should be sitting or lying on the
examination table (Fig. 8.15).
8.15
• A 5-year-old child has a sense of modesty but will typically
allow caregivers and siblings to be present during an examination.
To maintain privacy, let the older child (an 11- or 12-year-old
child) decide whether caregivers or siblings should be present.
Preparation
• Break the ice with small talk about family, school, friends, music,
or sports.
• The child should undress himself or herself, leave underpants
218
on, and use a gown and drape.
• Demonstrate equipment; a school-age child is curious to know
how equipment works (Fig. 8.16).
8.16
• Comment on the body and how it works. An 8- or 9-year-old
child has some understanding of the body and is interested to
learn more. It is rewarding to see the child’s eyes light up when he
or she hears the heart sounds.
Sequence
• As with the adult, progress from head to toe.
The Adolescent
The major task of adolescence is to develop a self-identity. This takes shape from various sets of
values and different social roles (son or daughter, sibling, and student). In the end each person
needs to feel satisfied and comfortable with who he or she is. In the process the adolescent is
increasingly self-conscious and introspective. Peer group values and acceptance are important.
Position
• The adolescent should be sitting on the examination table. Try to
keep street clothes on and work around them as much as possible
(Fig. 8.17).
219
8.17
• Examine the adolescent alone, without parent or sibling present.
Preparation
• The body is changing rapidly. During the examination the
adolescent needs feedback that his or her own body is healthy and
developing normally.
• The adolescent has keen awareness of body image, often
comparing himself or herself to peers. Apprise the adolescent of
the wide variation among teenagers on the rate of growth and
development (see Sexual Maturity Rating [SMR], Chapters 18, 25,
and 27).
• Communicate with some care. Do not treat the teenager like a
child, but do not overestimate and treat him or her like an adult
either.
• Because the person is idealistic at this age, the adolescent is ripe
for health teaching. Positive attitudes developed now may last
through adult life. Focus your teaching on ways the adolescent can
promote wellness.
Sequence
• As with the adult, a head-to-toe approach is appropriate.
Examine genitalia last and do it quickly.
The Aging Adult
220
During later years the tasks are to develop the meaning of life and one’s own existence and to adjust
to changes in physical strength and health (Fig. 8.18).
8.18
Position
• The older adult should be sitting on the examination table; a frail
older adult may need to be supine.
• Arrange the sequence to allow as few position changes as
possible.
• Allow rest periods when needed.
Preparation
• Adjust the examination pace to meet the possible slowed pace of
the aging person. It is better to break the complete examination
into a few visits than to rush through the examination and turn off
the person.
• Use physical touch (unless there is a cultural contraindication).
This is especially important with the aging person because other
senses such as vision and hearing may be diminished.
• Do not mistake diminished vision or hearing for confusion.
Confusion of sudden onset may signify a disease state. It is noted
221
by short-term memory loss, diminished thought process,
diminished attention span, and labile emotions (see Mental Status
Assessment in Chapter 5).
• Be aware that aging years contain more life stress. Loss is
inevitable, including changes in physical appearance of the face
and body, declining energy level, loss of job through retirement,
loss of financial security, loss of longtime home, and death of
friends or spouse. How the person adapts to these losses
significantly affects health assessment.
Sequence
• Use the head-to-toe approach, as in the younger adult.
The Sick Person
For the person in some distress, alter the position during the examination. For example, a person
with shortness of breath or ear pain may want to sit up, whereas a person with faintness or
overwhelming fatigue may want to be supine. Adapt your assessment to the person’s comfort level.
Initially it may be necessary just to examine the body areas appropriate to the problem, collecting a
mini-database. You may return to finish a complete assessment after the initial distress is resolved.
222
References
1. Centers for Disease Control and Prevention (CDC). Guideline for hand hygiene
in health-care settings. MMWR Recomm Rep. 2002;51(RR–
16) https://www.cdc.gov/mmwr/PDF/rr/rr5116 .
2. Gupta S, Saint S, Detsky AS. Hiding in plain sight—resurrecting the power of
inspecting the patient. JAMA Intern Med. 2017;177:757–758.
3. Hockenberry M, Wilson D, Rodgers C. Wong’s essentials of pediatric nursing. 10th
ed. Elsevier: St. Louis, MO; 2017.
4. Wolpaw DR, Shapiro D. The virtues of irrelevance. N Engl J Med.
2014;370(13):1282–1285.
223
https://www.cdc.gov/mmwr/PDF/rr/rr5116
C H A P T E R 9
224
General Survey and Measurement
225
Objective Data
The general survey is a study of the whole person, covering the general health state and any
obvious physical characteristics. It is an introduction for the physical examination that will follow; it
gives an overall impression of the person. The general survey includes objective parameters that
apply to the whole person, not just one body system.
Begin a general survey at the moment you first encounter the person. What leaves an immediate
impression? Does the person stand promptly as his or her name is called and walk easily to meet
you? Or does the person look sick, rising slowly or with effort, with shoulders slumped and eyes
without luster or downcast? Is the hospitalized person conversing with visitors, involved in reading
or television, or lying perfectly still? Even as you introduce yourself and shake hands, you collect
data (Fig. 9.1). Does the person fully extend the arm, shake your hand firmly, make eye contact, or
smile? Are the palms dry or wet and clammy? As you proceed through the health history, the
measurements, and the vital signs, consider and make note of these four areas: physical
appearance, body structure, mobility, and behavior.
9.1
Normal Range of Findings/Abnormal Findings
The General Survey
Physical Appearance
Age—The person appears his or her stated age. Appears older than stated age, as with
chronic illness or chronic alcoholism.
Sex—Sexual development is appropriate for sex and age. If the individual is transgender, note
the stage of transformation.
Delayed or precocious puberty.
Level of consciousness—The person is alert and oriented to person, place, time, and situation.
Attends to and responds appropriately to your questions.
Confused, drowsy, lethargic (see Table
5.1, Levels of Consciousness, p. 75).
Skin color—Color tone is even, pigmentation varying with genetic background; skin is intact
with no obvious lesions. Make note of tattoos and piercings and stage of healing.
Pallor, cyanosis, jaundice, erythema, any
lesions (see Chapter 13, p. 206).
Facial features—Facial features are symmetric with movement. Immobile, masklike, asymmetric,
drooping (see Table 14.5, Abnormal Facies
with Chronic Illness, p. 272).
Overall appearance—No signs of acute distress are present. Cardiac or respiratory signs—
Diaphoresis, clutching the chest,
shortness of breath, wheezing.
Pain, indicated by facial grimace,
holding body part.
Body Structure
Stature—The height appears within normal range for age, genetic heritage (see Measurement, p. Excessively short or tall (see Table 9.2,
226
127). Abnormalities in Body Height and
Proportion, p. 136).
Nutrition—The weight appears within normal range for height and body build; body fat
distribution is even.
Cachectic, emaciated.
Simple obesity, with even fat
distribution.
Centripetal (truncal) obesity—Fat
concentrated in face, neck, trunk, with
thin extremities, as in Cushing
syndrome (see Table 9.2).
Symmetry—Body parts look equal bilaterally and are in relative proportion to each other. Unilateral atrophy or hypertrophy.
Asymmetric location of a body part.
Posture—The person stands comfortably erect as appropriate for age. Note the normal “plumb
line” through anterior ear, shoulder, hip, patella, ankle. Exceptions are the standing toddler,
who has a normally protuberant abdomen (“toddler lordosis”), and the aging person, who may
be stooped with kyphosis.
Rigid spine and neck; moves as one
unit (e.g., arthritis).
Stiff and tense, ready to spring from
chair, fidgety movements.
Shoulders slumped; looks deflated
(e.g., depression).
Position—The person sits comfortably with arms relaxed at sides and head turned to examiner. Tripod—Leaning forward with arms
braced on chair arms; occurs with
chronic pulmonary disease.
Sits straight up and resists lying down
(e.g., heart failure).
Curled up in fetal position (e.g., acute
abdominal pain).
Body build, contour—Proportions are:
1. Arm span (fingertip to fingertip) equals height.
2. Body length from crown to pubis roughly equal to length from pubis to sole.
Elongated arm span (e.g., Marfan
syndrome, hypogonadism) (see Table 9.2).
Obvious physical deformities—Note any congenital or acquired defects. Missing extremities or digits; webbed
digits; shortened limb.
Mobility
Gait—Feet approximately shoulder width apart; foot placement is accurate; walk is smooth and
even, and person can maintain balance without assistance. Associated movements such as
symmetric arm swing are present.
Exceptionally wide base. Staggering,
stumbling.
Shuffling, dragging, nonfunctional
leg. Limping with injury.
Propulsion—Difficulty stopping (see
Table 24.6, Abnormal Gaits, p. 675).
Range of motion—Note full mobility for each joint and that movement is deliberate, accurate,
smooth, and coordinated. (See Chapter 23 for information on more detailed testing of joint range
of motion.)
Limited joint range of motion.
Paralysis—Absent movement.
Jerky, uncoordinated movement.
No involuntary movement. Tics, tremors, seizures (see Table 24.4,
Abnormalities in Muscle Movement, p.
672).
Behavior
Facial expression—The person maintains eye contact (if culturally appropriate); expressions are
appropriate to the situation (e.g., thoughtful, serious, or smiling). (Note expressions both while
the face is at rest and while the person is talking.)
Flat, depressed, angry, sad, anxious.
However, note that anxiety is common in
ill people. Also, some people smile when
they are anxious.
Mood and affect—The person is comfortable and cooperative with the examiner and interacts
pleasantly.
Hostile, distrustful, suspicious, crying.
Speech—Articulation (the ability to form words) is clear and understandable. Dysarthria and dysphasia (see Table 5.2,
Speech Disorders, p. 76). Speech defect,
monotone, garbled speech.
Speech pattern—The stream of talking is fluent with an even pace. The person conveys ideas
clearly. Word choice is appropriate for culture and education. Communicates in prevailing
language easily by himself or herself or with an interpreter.
Extremes of few words or constant
talking.
Dress—Clothing is appropriate to the climate, looks clean and fits the body, and is appropriate
to the person’s culture and age-group (e.g., normally Amish women wear clothing from the 19th
century; Indian women may wear saris). Culturally determined dress should not be labeled as
inappropriate by Western standards or adult expectations.
Clothing too large and held up by belt
suggests weight loss, as does the
addition of new holes in belt. Clothing
too tight may indicate obesity or
ascites.
Consistent wear of certain clothing
may provide clues: long sleeves may
conceal needle marks of drug abuse or
thin arms of anorexia; Velcro fasteners
instead of buttons may indicate
chronic motor dysfunction.
Personal hygiene—The person appears clean and groomed appropriately for his or her age,
occupation, and socioeconomic group. (Note that a wide variation of dress and hygiene is
“normal.” Many cultures do not include use of deodorant or women shaving legs.) Hair is
groomed, brushed. Makeup is appropriate for age and culture.
Body odor, scent of alcohol.
Unkempt appearance in an individual
who previously had good hygiene
may indicate depression, malaise, or
illness.
Measurement
Weight
Use a standardized balance or electronic standing scale (Fig. 9.2). Instruct the person to
remove his or her shoes and heavy outer clothing before standing on the scale. When a
sequence of repeated weights is necessary, aim for approximately the same time of day and
the same type of clothing worn each time. Record the weight in kilograms and in pounds.
An unexplained weight loss may be a sign
of a short-term illness (e.g., fever,
infection, disease of the mouth or throat)
or a chronic illness (e.g., endocrine
disease, malignancy, depression, anorexia
nervosa, bulimia). Unexplained weight
gain may indicate fluid retention (e.g.,
heart failure).
227
9.2
Height
Use a wall-mounted device or the measuring pole on the balance scale. Align the extended
headpiece with the top of the head. The person should be shoeless, standing straight with gentle
traction under the jaw, and looking straight ahead. Feet, shoulders, and buttocks should be in
contact with the wall or measuring pole.
Body Mass Index
Body mass index (BMI) is a practical marker of optimal healthy weight for height and an
indicator of obesity or malnutrition. Traditionally, BMI is used to guide patient progress
toward a healthy weight and is used to identify people at high risk for developing health
problems such as cardiovascular disease. BMI expresses the relationship between height and
weight, but does not consider other variables such as muscle mass. BMI also may be less
effective in children or in older adults.
Researchers recommend using BMI in conjunction with other measures such as waist
circumference.3 Using BMI alone, nearly 75 million adults in the United States are
misclassified as cardiometabolically healthy or unhealthy.4
The cause of weight gain is usually
excess caloric intake; occasionally it is
endocrine disorders, drug therapy
(e.g., corticosteroids), or depression.
BMI classifications for adults:
Underweight < 18.5 kg/m2
Normal weight 18.5 to 24.9 kg/m2
Overweight 25 to 29.9 kg/m2
Obesity (class 1) 30 to 34.9 kg/m2
Obesity (class 2) 35 to 39.9 kg/m2
Extreme obesity (class 3) ≥40 kg/m2
A healthy BMI is a level of 19 or greater to less than 25. Show the person how his or her own
weight matches up to the national guidelines for optimal BMI (see Table 9.1). Compare the
person's current weight with that from the previous health visit. Discuss the importance of other
cardiometabolic risk factors such as healthy diet, exercise, and laboratory studies (e.g., lipids).
Note that BMI overestimates body fat in people who are very muscular and underestimates
body fat in older adults who have lost muscle mass. While BMI is a useful tool, it should not be
used alone. You will need to consider other markers of overall health along with BMI.
In the United States more than of
adults and of children are overweight
or obese. Overweight and obesity affect
more Hispanics and non-Hispanic Blacks
than non-Hispanic Whites, whereas Asian
Americans have a much lower prevalence
than other ethnic groups.2
You may calculate BMI by using an online BMI calculator,
or you can calculate it with the following formula:
Or
Waist Circumference
Excess abdominal fat is an important independent risk factor for disease. If most of the
weight is carried around the waist instead of around the hips, the person is at higher risk for
heart disease and type 2 diabetes.
With the person standing, locate the hip bone—the very top is the iliac crest. Place a
A waist circumference (WC) ≥35 inches in
women and ≥40 inches in men increases
the risk for type 2 diabetes, dyslipidemia,
hypertension, and cardiovascular disease
228
measuring tape around the waist, parallel to the floor, at the level of the iliac crest. The tape
should be snug but not pinch in the skin. Note the measurement at the end of a normal
expiration (Fig. 9.3).
9.3
(CVD) in people with a BMI between 25
and 35.
DEVELOPMENTAL COMPETENCE
Infants and Children
General Survey
Physical appearance, body structure, mobility—Note the same basic elements as for the adult,
with consideration to age and development. Remember that children just learning to walk have
a wide gait and that normal toddler posture shows a protruding abdomen (lordosis).
Behavior—Note the response to stimuli and level of alertness appropriate for age. Infants
usually look toward your voice and may mimic facial expressions.
Parental bonding—Note the child's interactions with caregivers (i.e., that caregiver and child
show a mutual response and are warm and affectionate, appropriate to the child's condition).
The parent provides appropriate physical care of child and promotes new learning.
Some signs of child abuse are that the
child avoids eye contact; the child
exhibits no separation anxiety when
you would expect it for age; the
parent is disgusted by child's odor,
sounds, drooling, or stools.
For information on deprivation of
physical or emotional care see
Chapter 7.
Measurement
Weight. Weigh an infant on a platform-type scale (Fig. 9.4). To check calibration of a balance
scale, set the weight at zero and observe the beam balance. A digital scale should read zero
before each use. You may need to press the zero/tare button before placing the infant on the
scale. Follow agency guidelines for calibration of scales. Place the infant on the scale. Guard
the infant so that he or she does not fall. Weigh to the nearest 10 g ( oz) for infants and
100 g ( lb) for toddlers.
229
9.4
By age 2 or 3 years use the upright scale. Leave underpants on the child. Some young
children are fearful of the rickety standing platform and may prefer sitting on the infant
scale. Use the upright scale with preschoolers and school-age children, maintaining modesty
with light clothing (Fig. 9.5).
9.5
Length. Until age 2 years measure the infant's body length supine by using a horizontal
measuring board (Fig. 9.6). One person holds the top of the head against the head plate.
Because the infant normally has flexed legs, extend them momentarily by gently stretching
the spine and legs with the feet touching the perpendicular footplate. You may need to
repeat the measure to ensure accuracy.
230
9.6
Height. Measure the child's height by standing against a ruler mounted on the scale or wall
(Fig. 9.7). Encourage the child to stand straight and tall and to look straight ahead without
tilting the head. The shoulders, buttocks, and heels ideally should touch the ruler. Hold a
level on the child's head at a right angle and note the measure to the nearest 1 mm ( in).
9.7
Physical growth is perhaps the best index of a child's general health. The child's height and
weight are recorded at every health care visit to determine normal growth patterns. The results
are plotted on growth charts based on data from the Centers for Disease Control and Prevention
(CDC).1 You can view these charts at www.cdc.gov. In addition to the weight, height, and head
circumference charts, BMI-for-age charts are available for boys and girls ages 2 to 20 years.
Further explore any growth measure
that:
• Falls below the 5th or above the 95th
percentile with no genetic explanation
• Shows a wide percentile difference
between height and weight (e.g., a 10th
percentile height with a 95th percentile
weight)
• Shows that growth has suddenly
stopped when it had been steady
• Fails to show normal growth spurts
during infancy and adolescence
Healthy childhood growth is continuous but uneven, with rapid growth spurts occurring during
infancy and adolescence. Growth chart results are more reliable when comparing numerous
growth measures over time. These charts also compare the individual child's measurements
against the general population. Normal limits range from the 5th to the 95th percentile on the
standardized charts.
Use your judgment and consider the genetic background of the small-for-age child. Explore the
growth patterns of the parents and siblings. The differences in size and growth among the major
racial/ethnic groups in the United States appear to be small and inconsistent.1 You can use the
revised 2000 CDC growth charts on all infants and children in the United States, regardless of
race or ethnicity. The CDC notes that the most important evidence for growth potential appears
to be economic, nutritional, and environmental.
Head Circumference. Measure the infant's head circumference at birth and at each well-child
231
http://www.cdc.gov
visit up to age 2 years and then annually up to 6 years (Fig. 9.8). A retractable plastic tape
measure is more accurate than a paper tape measure. Circle the tape around the head
aligned with the eyebrows at the prominent frontal and occipital bones; the widest span is
correct. Plot the measurement on standardized growth charts. Compare the infant's head
size with that expected for age. A series of measurements is more valuable than a single
figure to show the pattern of head growth.
9.8
The newborn's head measures about 32 to 38 cm (average around 34 cm) and is about 2 cm
larger than the chest circumference. The chest grows at a faster rate than the cranium; at some
time between 6 months and 2 years both measurements are about the same; after age 2 years the
chest circumference is greater than the head circumference.
Enlarged head circumference occurs with
increased intracranial pressure (see
Chapter 14).
Measurement of the chest circumference is valuable in a comparison with the head
circumference but not necessarily by itself. Encircle the tape around the chest at the nipple
line. It should be snug but not so tight that it leaves a mark (Fig. 9.9).
9.9
The Aging Adult
General Survey
Physical appearance—By the eighth and ninth decades, body contour is sharper with more
angular facial features, and body proportions are redistributed. (See measuring weight and
height, p. 127.)
Posture—A general flexion occurs by the eighth or ninth decade. Kyphosis is the humpback appearance
common in the very old and in those with
osteoporosis.
Gait—Older adults often use a wider base to compensate for diminished balance, arms may be
held out to help balance, and steps may be shorter or uneven.
Measurement
Weight. The older adult appears sharper in contour, with more prominent bony landmarks
than the younger adult. Body weight decreases during the 80s and 90s. This factor is more
evident in males, perhaps because of greater muscle shrinkage. The distribution of fat also
changes during the 80s and 90s. Even with good nutrition, subcutaneous fat is lost from the
face and periphery (especially the forearms), whereas additional fat is deposited on the
abdomen and hips (Fig. 9.10).
232
9.10 (Rossman, 1986.)
This change in fat distribution and loss in muscle mass can affect the BMI interpretation in older
adults. For any given BMI, an older adult has more fat tissue than lean tissue when compared
with a younger adult. As an aging person becomes shorter, the BMI reflecting the shorter height
may overestimate the body fat content.
Height. By their 80s and 90s many people are shorter than they were in their 70s because of
thinning of the vertebral disks, shortening of the individual vertebrae, postural changes of
kyphosis, and slight flexion in the knees and hips. Because long bones do not shorten with age,
the overall body proportion looks different—a shorter trunk with relatively long extremities (see
Fig. 9.10).
TABLE 9.1
Body Mass Index Table
NORMAL OVERWEIGHT OBESE
BMI 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
HEIGHT (inches) BODY WEIGHT (pounds)
58 91 96 100 105 110 115 119 124 129 134 138 143 148 153 158 162 167 172 177 181 186
59 94 99 104 109 114 119 124 128 133 138 143 148 153 158 163 168 173 178 183 188 193
60 97 102 107 112 118 123 128 133 138 143 148 153 158 163 168 174 179 184 189 194 199
61 100 106 111 116 122 127 132 137 143 148 153 158 164 169 174 180 185 190 195 201 206
62 104 109 115 120 126 131 136 142 147 153 158 164 169 175 180 186 191 196 202 207 213
63 107 113 118 124 130 135 141 146 152 158 163 169 175 180 186 191 197 203 208 214 220
64 110 116 122 128 134 140 145 151 157 163 169 174 180 186 192 197 204 209 215 221 227
65 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228 234
66 118 124 130 136 142 148 155 161 167 173 179 186 192 198 204 210 216 223 229 235 241
67 121 127 134 140 146 153 159 166 172 178 185 191 198 204 211 217 223 230 236 242 249
68 125 131 138 144 151 158 164 171 177 184 190 197 203 210 216 223 230 236 243 249 256
69 128 135 142 149 155 162 169 176 182 189 196 203 209 216 223 230 236 243 250 257 263
70 132 139 146 153 160 167 174 181 188 195 202 209 216 222 229 236 243 250 257 264 271
71 136 143 150 157 165 172 179 186 193 200 208 215 222 229 236 243 250 257 265 272 279
72 140 147 154 162 169 177 184 191 199 206 213 221 228 235 242 250 258 265 272 279 287
73 144 151 159 166 174 182 189 197 204 212 219 227 235 242 250 257 265 272 280 288 295
74 148 155 163 171 179 186 194 202 210 218 225 233 241 249 256 264 272 280 287 295 303
75 152 160 168 176 184 192 200 208 216 224 232 240 248 256 264 272 279 287 295 303 311
76 156 164 172 180 189 197 205 213 221 230 238 246 254 263 271 279 287 295 304 312 320
EXTREME OBESITY
BMI 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
HEIGHT (inches) BODY WEIGHT (pounds)
58 191 196 201 205 210 215 220 224 229 234 239 244 248 253 258
59 198 203 208 212 217 222 227 232 237 242 247 252 257 262 267
60 204 209 215 220 225 230 235 240 245 250 255 261 266 271 276
61 211 217 222 227 232 238 243 248 254 259 264 269 275 280 285
62 218 224 229 235 240 246 251 256 262 267 273 278 284 289 295
63 225 231 237 242 248 254 259 265 270 278 282 287 293 299 304
64 232 238 244 250 256 262 267 273 279 285 291 296 302 308 314
65 240 246 252 258 264 270 276 282 288 294 300 306 312 318 324
66 247 253 260 266 272 278 284 291 297 303 309 315 322 328 334
67 255 261 268 274 280 287 293 299 306 312 319 325 331 338 344
68 262 269 276 282 289 295 302 308 315 322 328 335 341 348 354
69 270 277 284 291 297 304 311 318 324 331 338 345 351 358 365
233
70 278 285 292 299 306 313 320 327 334 341 348 355 362 369 376
71 286 293 301 308 315 322 329 338 343 351 358 365 372 379 386
72 294 302 309 316 324 331 338 346 353 361 368 375 383 390 397
73 302 310 318 325 333 340 348 355 363 371 378 386 393 401 408
74 311 319 326 334 342 350 358 365 373 381 389 396 404 412 420
75 319 327 335 343 351 359 367 375 383 391 399 407 415 423 431
76 328 336 344 353 361 369 377 385 394 402 410 418 426 435 443
Adapted from Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence
report. Available at https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_tbl.htm.
234
https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_tbl.htm
Documentation and Critical Thinking
Sample Charting
Subjective
J.M. is a 95-year-old retired professor who appears healthy and of stated age. Alert, oriented, and
cooperative during health history.
Objective
Skin tone is even with senile lentigines on dorsa of hands and forearms bilaterally. Gait smooth; feet
slightly wider than shoulders. No obvious physical deformities. Intention tremor noted when
completing history form. Speech appropriate, clear, and understandable. Kempt appearance. Height
152 in (5 ft 10 in), weight 75 kg (165 lb). BMI 23 (healthy). Waist circumference 30 in.
235
Abnormal Findings
TABLE 9.2
Abnormalities in Body Height and Proportion
Hypopituitary Dwarfism
Deficiency in growth hormone in childhood results in retardation of growth below
the 3rd percentile, delayed puberty, hypothyroidism, and adrenal insufficiency. The
9-year-old girl at left appears much younger than her chronologic age, with infantile
facial features and chubbiness. The age-matched girl at right shows increased height,
more mature facial features, and loss of infantile fat.
Gigantism
Excessive secretion of growth hormone by the anterior
pituitary results in overgrowth of the entire body.
When this occurs during childhood before closure of
bone epiphyses, it causes increased height (here 2.09
m, or 6 ft 9 in), as well as increased weight and
delayed sexual development.
Acromegaly (Hyperpituitarism)
Excessive secretion of growth hormone in adulthood
after normal completion of body growth causes
overgrowth of bone in face, head, hands, and feet but
no change in height. Internal organs also enlarge (e.g.,
cardiomegaly), and metabolic disorders (e.g., diabetes
mellitus) may be present.
236
Achondroplastic Dwarfism
A genetic disorder in converting cartilage to bone results in normal trunk size, short
arms and legs, and short stature. It is characterized by a relatively large head with
frontal bossing; midface hypoplasia (small); and often thoracic kyphosis, prominent
lumbar lordosis, and abdominal protrusion. The mean adult height in men is about
131.5 cm (4 ft 4 in) and in women about 125 cm (4 ft 1 in).
Anorexia Nervosa
This serious mental health disorder is characterized by
severe and life-threatening weight loss in an otherwise
healthy person. Behavior is characterized by fanatic
concern about weight, aversion to food, distorted
body image (perceives self as fat despite skeletal
appearance), starvation diets, frenetic exercise
patterns, and striving for perfection. Results in
amenorrhea in females.
Endogenous Obesity—Cushing Syndrome
Either administration of adrenocorticotropin (ACTH)
or excessive production of ACTH by the pituitary
stimulates the adrenal cortex to secrete excess cortisol.
This causes Cushing syndrome, characterized by
weight gain and edema with central trunk and
cervical obesity (buffalo hump) and round, plethoric
face (moon face). Excessive catabolism causes muscle
wasting; weakness; thin arms and legs; reduced
height; and thin, fragile skin with purple abdominal
striae, bruising, and acne. Note that the obesity here is
markedly different from exogenous obesity caused by
excessive caloric intake, in which body fat is evenly
distributed and muscle strength is intact. (See Chapter
12, Nutrition Assessment, p. 179.)
Marfan Syndrome
This inherited connective tissue disorder is
characterized by tall, thin stature (≥95th percentile),
arachnodactyly (long, thin fingers), hyperextensible
joints, arm span greater than height, pubis-to-sole
measurement exceeding crown-to-pubis
measurement, sternal deformity (note pectus
excavatum), high-arched narrow palate, narrow face,
and pes planus (flat feet). Early morbidity and
mortality occur as a result of cardiovascular
complications such as mitral regurgitation and aortic
237
dissection.
See illustration credits for source information.
238
References
1. Centers for Disease Control and Prevention (CDC). CDC growth charts. [Available
at] www.cdc.gov; 2016.
2. National Institute of Diabetes and Digestive and Kidney Diseases. Overweight &
obesity statistics. https://www.niddk.nih.gov/health-information/health-
statistics/overweight-obesity; 2017.
3. Nazare J, Smith J, Borel A, et al. Usefulness of measuring both body mass index
and waist circumference for the estimation of visceral adiposity and related
cardiometabolic risk profile (from the INSPIRE ME IAA Study). Am J Cardiol.
2015;115:307–315.
4. Tomiyama AJ, Hunger JM, Nguyen-Cuu J, et al. Misclassification of
cardiometabolic health when using body mass index categories in NHANES
2005-2012. Int J Obes. 2016;40:883–886.
239
http://www.cdc.gov
https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity
C H A P T E R 1 0
240
Vital Signs
241
Objective Data
You will use vital signs as an objective measure of the body's basic functions. When measuring vital
signs, you will include temperature, respiratory rate, pulse, and blood pressure (Fig. 10.1). Vital
signs help you monitor your patient's health and indicate deterioration, especially in the acute care
setting. Vital signs are monitored in the hospital setting, obtained at clinic visits, and monitored at
home. You will need to follow the guidelines at your facility for vital sign frequency and normal
range; however, you will use your [nursing] judgment to determine whether vital signs need to be
taken more frequently or whether a provider should be notified. The normal vital sign values in this
chapter are based on the current literature; however, patient condition may dictate a different vital
sign range. Always follow provider orders for vital sign range and understand that each patient is
different. If your patient is monitoring vital signs at home, you must provide teaching so that the
patient knows how to use their home equipment and when to notify the provider.
10.1
Normal Range of Findings/Abnormal Findings
Vital Signs
Temperature
Cellular metabolism requires a stable core, or “deep body,” temperature of a mean of 37.2° C (99° F). The body maintains a steady temperature
through a thermostat, or feedback mechanism, regulated in the hypothalamus of the brain. The thermostat balances heat production (from
metabolism, exercise, food digestion, external factors) with heat loss (through radiation, evaporation of sweat, convection, conduction).
The various routes of temperature measurement reflect the core temperature of the body. The normal oral temperature in a resting person is 37° C
(98.6° F), with a range of 35.8° to 37.3° C (96.4° to 99.1° F). The rectal temperature measures 0.4° to 0.5° C (0.7° to 1° F) higher than an oral
measurement.
The normal temperature is influenced by:
• A diurnal cycle of 1° to 1.5° F, with the trough occurring in the early morning hours and the peak occurring in late afternoon to early evening.
• The menstruation cycle in women. Progesterone secretion, occurring with ovulation at midcycle, causes a 0.5° to 1° F rise in temperature that
continues until menses.
• Exercise. Moderate-to-hard exercise increases body temperature.
• Age. Wider normal variations occur in the infant and young child because of less effective heat control mechanisms. In older adults temperature is
usually lower than in other age-groups, with a mean of 36.2° C (97.2° F) via the oral route.
242
The oral temperature is the most convenient and accurate site. The sublingual pocket has a rich blood supply from the carotid arteries that quickly
responds to changes in inner core temperature.
The Procedure: Oral Temperature
Shake a glass thermometer down to 35.5° C (96° F) and place it at the base of the tongue in either of the posterior sublingual pockets—not in front of
the tongue. Instruct the person to keep his or her lips closed. Leave in place 3 to 4 minutes if the person is afebrile and up to 8 minutes if febrile.
(Take other vital signs during this time.) Wait 15 minutes if the person has just taken hot or iced liquids and 2 minutes if he or she has just smoked.
The electronic thermometer has the advantages of swift and accurate measurement (usually less than 20 to 30 seconds). The instrument must be
fully charged and correctly calibrated. Children may enjoy watching the numbers advance on the thermometer during measurement. Electronic
thermometers can be used for both oral and rectal temperatures. Blue-tipped probes are for the oral route, whereas red-tipped probes are rectal.
The Procedure: Rectal Temperature
Rectal temperatures are the most accurate route, and the result is as close to core temperature as possible without using more invasive measures
reserved for the operating room and critical care environments. Although the rectal temperature provides the closest approximation to core
temperature, it is more invasive than other measures; therefore you must weigh the risks and benefits. Peripheral thermometers (e.g., tympanic,
temporal artery) have poor sensitivity for detecting low-grade fever, a potentially important indicator of infection; therefore it may be
advantageous to use a more sensitive method, such as a rectal temperature.11 The rectal temperature is the preferred route when the other routes
are impractical (e.g., for the comatose or confused patient; for patients in shock; or for those who cannot close their mouths or who have a wired
mandible or other facial dysfunction). The primary disadvantages to the rectal route are patient discomfort and the invasive nature of the
procedure.
Begin by positioning your patient appropriately, left lateral decubitus if possible. Wear gloves, place a cover on the thermometer and apply
lubricant to the probe. Insert the lubricated rectal probe 2 to 3 cm (1 in) into the rectum, directed toward the umbilicus. For infants <6 months
insert approximately inch. Leave in place until the electronic thermometer beeps or for minutes if using a glass thermometer. Do not let
go of the temperature probe while it is inserted into the rectum.
The Procedure: Tympanic Membrane Temperature
The tympanic membrane thermometer (TMT) senses infrared emissions of the tympanic membrane (eardrum). The tympanic membrane shares the
same vascular supply that perfuses the hypothalamus (the internal carotid artery); thus it is an accurate measurement of core temperature.
The TMT is a noninvasive, nontraumatic device that is extremely quick and efficient. The probe tip has the shape of an otoscope, the instrument used
to inspect the ear. Gently place the covered probe tip in the person's ear canal, and aim the infrared beam at the tympanic membrane. Do not occlude
the canal. Activate the device and read the temperature in 2 to 3 seconds.
There is minimal chance of cross-contamination with the tympanic thermometer because the ear canal is lined with skin and not mucous membrane.
Current evidence suggests that TMT measurement is not as accurate as other devices.2 TMT has fallen out of favor in many acute care settings but is
still used by some clinics.
The Procedure: Temporal Artery Thermometer
The newest noninvasive temperature measurement method uses infrared emissions from the temporal artery. The temporal artery thermometer
(TAT) is used by sliding the probe across the forehead and behind the ear. The thermometer works by taking multiple readings and providing an
average. The reading takes approximately 6 seconds. This approach is well tolerated and is more accurate than TMTs; however, there are conflicting
reports about its accuracy.2,11 Assuring that thermometers are calibrated and used per manufacturer instructions can help maintain accuracy.
Report the temperature in degrees Celsius unless your agency uses the Fahrenheit scale. Familiarize yourself with both scales. Note that it is far
easier to learn to think in the centigrade scale than to take the time for conversions. Begin by memorizing these convenient equivalents:
Along with your results, make sure to note the route used to obtain the temperature reading.
Pulse
243
With every beat the heart pumps an amount of blood—the stroke volume—into the aorta. This is about 70 mL in the adult. The force flares the
arterial walls and generates a pressure wave, which is felt in the periphery as the pulse. Palpating the peripheral pulse gives the rate and rhythm of
the heartbeat and local data on the condition of the artery.
Using the pads of your first three fingers, palpate the radial pulse at the flexor aspect of the wrist laterally along the radius bone (Fig. 10.2). If the
rhythm is regular, count the number of beats in 30 seconds and multiply by 2. Although the 15-second interval is frequently practiced, any one-
beat error in counting results in a recorded error of 4 beats/min. The 30-second interval is most accurate and efficient when heart rates are normal
or rapid and when rhythms are regular.6 However, if the rhythm is irregular, count for a full minute. As you begin the counting interval, start
your count with “zero” for the first pulse felt. The second pulse felt is “one,” and so on. Beginning the count at “one” overestimates the heart
rate.6 Assess the pulse, including (1) rate, (2) rhythm, and (3) force.
10.2 Palpate radial pulse.
Rate
In the adult at physical and mental rest, recent clinical evidence shows the normal resting heart range of 95% of healthy individuals at 50 to 95
beats/min.10 Traditional resting heart rate limits established in the 1950s are 60 to 100 beats/min. This range is still used; however, no research
evidence supports it.
The rate normally varies with age, being more rapid in infancy and childhood (Table 10.1) and more moderate during adult and older years. The
rate also varies with gender; after puberty females have a slightly faster rate than males.
TABLE 10.1
Normal Heart Rate (beats per minute) in Infants and Children
AGE RESTING (AWAKE) RESTING (ASLEEP) EXERCISE/FEVER
Newborn 100-180 80-160 Up to 220
1 wk to 3 mo 100-220 80-200 Up to 220
3 mo to 2 yr 80-150 70-120 Up to 220
2 to 10 yr 70-100 60-90 195-215
10 to 20 yr 55-90 50-90 195-215
From Burns, C. Dunn, A., Brady, M., et al. (2017). Pediatric primary care (6th ed.). Philadelphia: Saunders.
In the adult a resting heart rate less than 50 beats/min is bradycardia. Heart rates in the 50s/min occur normally in the well-trained athlete, whose
heart muscle develops along with the skeletal muscles. The stronger, more efficient heart muscle pushes out a larger stroke volume with each beat,
thus requiring fewer beats per minute to maintain a stable cardiac output.
A more rapid heart rate, variably defined as over 95 beats/min or over 100 beats/min, is tachycardia. Rapid rates occur normally with anxiety or with
increased exercise to match the body's demand for increased metabolism.
Rhythm
244
The pulse normally has a regular, even tempo. One irregularity that is commonly found in children and young adults is sinus arrhythmia. In sinus
arrhythmia the heart rate varies with the respiratory cycle, speeding up at the peak of inspiration and slowing to normal with expiration. Inspiration
momentarily causes a decreased stroke volume from the left side of the heart; to compensate the heart rate increases. (See Chapter 20 for a full
discussion on sinus arrhythmia.) If any other irregularities are felt, auscultate heart sounds for a more complete assessment (see Chapter 20).
Force
The force of the pulse shows the strength of the heart's stroke volume. A “full, bounding” pulse denotes an increased stroke volume (e.g., as with
anxiety, exercise, and some abnormal conditions). The pulse force is recorded using a three-point scale:
3+—Full, bounding
2+—Normal
1+—Weak, thready
0—Absent
Some agencies use a four-point scale; make sure that your system is consistent with that used by your agency. Either scale is somewhat
subjective. Experience will increase your clinical judgment. Most healthy adults have a force of 2+.
Record the rate, rhythm, and force of the pulse in the medical record.
Respirations
Normally a person's breathing is relaxed, regular, automatic, and silent. Because most people are unaware of their breathing, do not mention that
you will be counting the respirations, because sudden awareness may alter the normal pattern. Maintain your position of counting the radial pulse
and unobtrusively count the respirations. Count for 30 seconds, but count for a full minute if you suspect an abnormality. Avoid the 15-second
interval. The result can vary by a factor of +4 or −4, which is significant with such a small number. If you are having difficulty seeing the chest rise,
which can be especially difficult in obese individuals and children, you can place a hand on the upper chest or abdomen to help you “feel” the
respiratory rate. Report the number of breaths per minute as well as the character of breathing (i.e., relaxed, even).
Note that respiratory rates (Table 10.2) normally are more rapid in infants and children. Also, a fairly constant ratio of pulse rate to respiratory rate
exists, which is about 4 : 1. Normally both pulse and respiratory rates rise as a response to exercise or anxiety. More detailed assessment on
respiratory status is presented in Chapter 19.
TABLE 10.2
Normal Respiratory Rates
AGE (YEARS) RESPIRATORY RATE (BREATHS/MINUTE)
0-1 24-38
1-3 22-30
4-6 20-24
7-9 18-24
10-14 16-22
15-18 14-20
Adult 10-20
Table adapted from Burns, C. Dunn, A., Brady, M., et al. (2017). Pediatric primary care (6th ed.). Philadelphia: Saunders.
Blood Pressure
Blood pressure (BP) is the force of the blood pushing against the side of its container, the vessel wall. The strength of the push changes with the
event in the cardiac cycle. The systolic pressure is the maximum pressure felt on the artery during left ventricular contraction, or systole. The
diastolic pressure is the elastic recoil, or resting, pressure that the blood exerts constantly between each contraction. The pulse pressure is the
difference between the systolic and diastolic pressures and reflects the stroke volume (Fig. 10.3).
10.3
The mean arterial pressure (MAP) is the pressure forcing blood into the tissues averaged over the cardiac cycle. This is not an arithmetic average
of systolic and diastolic pressures because diastole lasts longer. MAP can be calculated using a variety of formulas:
245
Or
The average BP varies with many factors such as:
• Age. Normally a gradual rise occurs through childhood and into the adult years.
• Sex. Before puberty no difference exists between males and females. After puberty females usually show a lower BP reading than do male
counterparts. After menopause BP in females is higher than in male counterparts.
• Race. In the United States an African-American adult's BP is often higher than that of a non-Hispanic white person of the same age. The incidence
of hypertension is twice as high in African Americans as in non-Hispanic whites.3 The reasons for this difference are not understood fully, but we
do know that genetic profile and environmental factors are involved. (See Chapter 20, p. 462.)
• Diurnal rhythm. A daily cycle of a peak and a trough occurs: the BP climbs to a high in late afternoon or early evening and then declines to an
early-morning low.
• Weight. BP is higher in obese people than in people of normal weight of the same age (including adolescents).
• Exercise. Increasing activity yields a proportionate increase in BP. Within 5 minutes of terminating the exercise, the BP normally returns to
baseline.
• Emotions. The BP momentarily rises with fear, anger, and pain as a result of stimulation of the sympathetic nervous system.
• Stress. The BP is elevated in people feeling continual tension because of lifestyle, occupational stress, or life problems.
The level of BP is determined by five factors (Fig. 10.4):
10.4
1. Cardiac output. If the heart pumps more blood into the container (i.e., the blood vessels), the pressure on the container walls increases.
2. Peripheral vascular resistance. Peripheral vascular resistance is the opposition to blood flow through the arteries. When the container becomes
smaller (e.g., with constricted vessels), the pressure needed to push the contents becomes greater. Conversely, if the container becomes larger (e.g.,
vasodilation), less pressure is needed.
3. Volume of circulating blood. Volume of circulating blood refers to how tightly the blood is packed into the arteries. Increasing the contents in the
container (e.g., with a blood transfusion) increases the pressure.
4. Viscosity. The “thickness” of blood is determined by its formed elements, the blood cells. When the contents are thicker, the pressure increases.
5. Elasticity of vessel walls. When the container walls are stiff and rigid, the pressure needed to push the contents increases.
BP is measured with a stethoscope and an aneroid sphygmomanometer. The aneroid gauge is subject to drift; it must be recalibrated at least once each
year, and it must rest at zero.
246
The cuff consists of an inflatable rubber bladder inside a cloth cover. The width of the rubber bladder should equal 40% of the circumference of the
person's arm. The length of the bladder should equal 80% of the arm circumference.
Available cuffs include 6 sizes, a range that fits newborn infants to the extra-large adult, as well as tapered cuffs for the cone-shaped obese arm
and thigh cuffs. Match the appropriate-size cuff to the person's arm size and shape and not to his or her age (Fig. 10.5).
10.5
The Procedure: Arm Pressure
A comfortable, relaxed person yields a valid BP. Many people are anxious at the beginning of an examination; allow at least a 5-minute rest before
measuring the BP. Then take two or more BP measurements separated by 1 to 2 minutes.
For each person, verify BP in both arms once, either on admission or for the first complete physical examination. It is not necessary to continue to
check both arms for screening or monitoring. Occasionally a 5- to 10-mm Hg difference may occur in BP in the two arms, which is caused by artifact
or subtle differences in technique. If values are different, use the higher value. A normal BP reading is <120/<80 in adults.13
The person may be sitting or lying, with the bare arm supported at heart level. When sitting, the patient's feet should be flat on the floor because BP
has a false-high measurement when legs are crossed versus uncrossed.12
Palpate the brachial artery, which is located just above the antecubital fossa, medial to the biceps tendon. With the cuff deflated, center it about 2.5
cm (1 in) above the brachial artery and wrap the cuff evenly.
Now palpate the brachial or radial artery (Fig. 10.6). Inflate the cuff until the artery pulsation is obliterated. Note that number. When you inflate
the cuff to auscultate the blood pressure, you will add 20 to 30 mm Hg to the number you noted to identify the maximal inflation level. This
maximal inflation pressure helps you to avoid missing an auscultatory gap, which is a period when Korotkoff sounds disappear during
auscultation (Table 10.3).
10.6
TABLE 10.3
Korotkoff Sounds
PHASE QUALITY DESCRIPTION RATIONALE
Cuff No sound Cuff inflation compresses brachial artery. Cuff pressure exceeds heart systolic pressure,
247
correctly
inflated
occluding brachial artery blood flow.
I Tapping Soft, clear tapping,
increasing in
intensity
Systolic pressure. As cuff pressure lowers to reach intraluminal systolic pressure, the
artery opens and blood first spurts into brachial artery. Blood is at very high velocity
because of small opening of artery and large pressure difference across opening. This
creates turbulent flow, which is audible.
Auscultatory
gap
No sound Silence for 30 to 40
mm Hg during
deflation; an
abnormal finding
Sounds temporarily disappear during end of phase I and reappear in phase II. May
occur with hypertension. If undetected, results in falsely low systolic or falsely high
diastolic reading.
II Swooshing Softer murmur
follows tapping
Turbulent blood flow through still partially occluded artery.
III Knocking Crisp, high-pitched
sounds
Longer duration of blood flow through artery. Artery closes just briefly during late
diastole.
IV Abrupt
muffling
Sound mutes to a
low-pitched,
cushioned
murmur; blowing
quality
Artery no longer closes in any part of cardiac cycle. Change in quality, not intensity.
V Silence Decreased velocity of blood flow. Streamlined blood flow is silent. The disappearance of
sound is diastolic pressure. The fifth Korotkoff sound is used to define diastolic
pressure in all age-groups.
Deflate the cuff quickly and completely; then wait 15 to 30 seconds before reinflating so that the blood trapped in the veins can dissipate. Place
the bell or diaphragm of the stethoscope over the site of the brachial artery, making a light but airtight seal (Fig. 10.7). The diaphragm endpiece is
usually adequate, but the bell is designed to pick up low-pitched sounds such as the sounds of a BP reading. Most novice practitioners find it
easier to use the diaphragm than the bell. You can use either side to obtain an accurate reading.9
248
10.7
Rapidly inflate the cuff to the maximal inflation level that you determined. Then deflate the cuff slowly and evenly, about 2 mm Hg per heartbeat. If
the heartbeat is rapid, aim for approximately 2 mm Hg per second. Note the points at which you hear the first appearance of sound, the muffling of
sound, and the final disappearance of sound. These are phases I, IV, and V of Korotkoff sounds, which are the components of a BP reading first
described by a Russian surgeon in 1905 (see Table 10.3).
For all age-groups the fifth Korotkoff phase is used to define diastolic pressure. However, when a variance greater than 10 to 12 mm Hg exists
between phases IV and V, record both phases along with the systolic reading (e.g., 142/98/80). Clear communication is important because the
results significantly affect diagnosis and planning of care. See Table 10.4 for a list of common errors in BP measurement.
TABLE 10.4
Common Errors in Blood Pressure Measurement
COMMON ERROR RESULT RATIONALE
Taking blood pressure reading when person is anxious
or angry or has just been active
Falsely high Sympathetic nervous system stimulation
Faulty arm position:
Above level of heart Falsely low Eliminates effect of hydrostatic pressure
Below level of heart Falsely high Additional force of gravity added to brachial artery pressure
Person supports own arm Falsely high
diastolic
Sustained isometric muscular contraction
Faulty leg position (e.g., person's legs are crossed) Falsely high
systolic and
diastolic
Translocation of blood volume from dependent legs to
thoracic area
Inaccurate cuff size (most common error):
Cuff too narrow for extremity Falsely high Needs excessive pressure to occlude brachial artery
Cuff wrap is too loose or uneven, or bladder balloons
out of wrap
Falsely high Needs excessive pressure to occlude brachial artery
Failure to palpate radial artery while inflating:
Inflating cuff not high enough Falsely low
systolic
Misses initial systolic tapping or may tune in during
auscultatory gap (tapping sounds disappear for 30 to 40 mm
Hg and then return; may occur with hypertension)
Inflating cuff too high Pain
Pushing stethoscope too hard on brachial artery Falsely low
diastolic
Excessive pressure distorts artery, and sounds continue
Deflating cuff:
Too quickly Falsely low
systolic or
falsely high
diastolic
Insufficient time to hear tapping
Too slowly Falsely high
diastolic
Venous congestion in forearm makes sounds less audible
Halting during descent and reinflating cuff to recheck
systolic
Falsely high
diastolic
Venous congestion in forearm
Failure to wait 1-2 min before repeating entire reading Falsely high
diastolic
Venous congestion in forearm
249
Any observer error:
Examiner's “subconscious bias”; a preconceived idea of
what BP reading should be because of person's age, race,
gender, weight, history, or condition
Error
anywhere
Never assume that because a person appears healthy, his or
her BP will be within normal limits
Examiner's haste
Faulty technique
Examiner's digit preference; “hears” more results
that end in zero than would occur by chance alone
(e.g., 130/80)
Diminished hearing acuity
Defective or inaccurately calibrated equipment
Error
anywhere
Record the BP using even numbers since each line on the sphygmomanometer is 2 mm Hg. Also record the person's position, the arm used, and
the cuff size if different from the standard adult cuff.
Orthostatic (or Postural) Vital Signs
Take serial measurements of pulse and BP when (1) you suspect volume depletion, (2) when the person is known to have hypertension or is taking
antihypertensive medications, or (3) when the person reports fainting or syncope. Have the person rest supine for at least 3 minutes, then take
baseline BP and pulse readings. Have the patient sit up and assess BP and pulse; then have the patient stand and assess BP and pulse. Finally, after
the patient has been standing for 3 minutes, assess BP and pulse.1,4 For the person who is too weak or dizzy to stand, assess supine and then sitting
with legs dangling. When the position is changed from supine to standing, normally a slight decrease (less than 10 mm Hg) in systolic pressure may
occur.
Thigh Pressure
When BP measured at the arm is excessively high, particularly in adolescents and young adults, compare it with the thigh pressure to check for
coarctation of the aorta (a congenital form of narrowing). Normally the thigh pressure is higher than in the arm. If possible, help the person to a
prone position. (If the person must remain in the supine position, bend the knee slightly.) Wrap a large cuff around the lower third of the thigh,
centered over the popliteal artery on the back of the knee. Auscultate the popliteal artery for the reading (Fig. 10.8). Normally the systolic value
is 10 to 40 mm Hg higher in the thigh than in the arm, and the diastolic pressure is the same.
10.8
DEVELOPMENTAL COMPETENCE
Infants and Children
Measure vital signs to monitor clinical condition in children, but follow agency guidelines for frequency. Note that blood pressure is not regularly
assessed in children less than 3 years old. With an infant, reverse the order of vital sign measurement to respiration, pulse, and temperature. Taking a
250
rectal temperature may cause the infant to cry, which will increase the respiratory and pulse rate, thus masking the normal resting values. A
preschooler's normal fear of body mutilation is increased with any invasive procedure. Whenever possible avoid the rectal route and take a tympanic
or temporal artery temperature. Remember that you may have to use the rectal route for an accurate core measure. It is important to weigh risks and
benefits when deciding on the appropriate temperature route for a child. Promote the cooperation of the school-age child by explaining the procedure
completely and encouraging the child to handle the equipment. Your approach to measuring vital signs with the adolescent is much the same as with
the adult.
Temperature
Tympanic Membrane and Temporal Artery. TMT and TAT measurements are useful with toddlers who squirm at the restraint needed for the
rectal route and with preschoolers who are not yet able to cooperate for an oral temperature yet fear the disrobing and invasion of a rectal
temperature. TMT and TAT measure temperature so rapidly that the measurement is over before the child realizes it (Fig. 10.9).
10.9
Axillary. The axillary route is safer and more accessible than the rectal route; however, its accuracy and reliability have been questioned. When cold
receptors are stimulated, brown fat tissue in the area releases heat through chemical energy, which artificially raises skin temperature. When the
axillary route is used, place the tip of the thermometer well into the axilla and hold the child's arm close to the body.
Oral. Use the oral route when the child is old enough to keep his or her mouth closed. This is usually at age 5 or 6 years, although some 4-year-old
children can cooperate. When available, use an electronic thermometer because it is unbreakable and it registers quickly.
Rectal. Use this route with infants or other age-groups when other routes are not feasible, such as with the child who is unable to cooperate or is
agitated, unconscious, or critically ill. An infant may be supine or side-lying, with the examiner's hand flexing the knees up onto the abdomen.
(When supine, cover the boy's penis with a diaper.) An infant also may lie prone across the adult's lap. Separate the buttocks with one hand, and
insert the lubricated electronic rectal probe
no farther than
2.5 cm (1 in) for children >6 months and approximately inch for children <6 months.
Insertion >1 inch risks rectal perforation because the colon curves posteriorly at 3 cm ( in). Do not let go of the thermometer probe.
Normally rectal temperatures measure higher in infants and young children than in adults, with an average of 37.8° C (100° F) at 18 months. In
addition, the temperature normally may be elevated in the late afternoon, after vigorous playing, or after eating.
Pulse
Palpate or auscultate an apical rate with infants and toddlers. (See Chapter 20 for location of apex and technique.) In children older than 2 years, use
the radial site. Count the pulse for a full minute to take into account normal irregularities such as sinus arrhythmia. The heart rate normally
fluctuates more with infants and children than with adults in response to exercise, emotion, and illness. Note normal pulse rate in Table 10.1 on
142.
Respirations
Watch the infant’s abdomen for movement because an infant’s respirations are normally more diaphragmatic than thoracic (Fig. 10.10). The
sleeping respiratory rate is the most accurate. Count a full minute because the pattern varies significantly from rapid breaths to short periods of
apnea. Note the normal rate in Table 10.2 on p. 143.
251
10.10
Blood Pressure
In children ages 3 years and older, measure a routine BP at least annually and more frequently in children with certain medical conditions. BP
should be checked more frequently in children and adolescents if they have certain conditions such as obesity, renal disease, or diabetes.5 For
accurate measurement in children, make some adjustment in the choice of equipment and technique. The most common error is to use the incorrect
size cuff. The cuff width must cover at least 40% of the upper arm, and the cuff bladder must be 80% to 100% the circumference of the arm.5
Use a pediatric-size endpiece on the stethoscope. Best practice dictates that the child should be seated 3 to 5 minutes before measurement. If
possible, allow a crying infant to become quiet for 5 to 10 minutes before measuring the BP; crying may elevate the systolic pressure by 30 to 50
mm Hg. Children should be seated with their back supported and feet on the floor during measurement. For consistency and comparison to
normative tables, BP in children should be taken in the right arm. The arm should be supported, at the level of the heart. Use the disappearance
of sound (phase V Korotkoff) for the diastolic reading in both children and adults.
Note the guidelines for BP standards based on sex, age, and height.5 These standards give a more precise classification of BP according to body
size and avoid misclassifying children who are very tall or very short.
Children younger than 3 years have such small arm vessels that it is difficult to hear Korotkoff sounds with a stethoscope. Instead use an electronic
BP device that uses oscillometry, such as Dinamap, and gives a digital readout for systolic, diastolic, MAP, and pulse. Or use a Doppler ultrasound
device to amplify the sounds. This instrument is easy to use and can be used by one examiner. (Note the technique for using the Doppler device on
p. 155.)
252
The Aging Adult
Vital Signs
Temperature. Changes in the body’s temperature regulatory mechanism leave the older adult less likely to have fever but at a greater risk for
hypothermia. Thus the temperature is a less reliable index of the older person’s true health state. Sweat gland activity is also diminished.
Pulse. The normal range of heart rate is 50 to 95 beats/min, but the rhythm may be slightly irregular. The radial artery may feel stiff, rigid, and
tortuous in an older person, although this condition does not necessarily imply vascular disease in the heart or brain. The increasingly rigid arterial
wall needs a faster upstroke of blood, so the pulse is actually easier to palpate.
Respirations. Aging causes a decrease in vital capacity and a decreased inspiratory reserve volume. You may note a shallower inspiratory phase and
an increased respiratory rate.
Blood Pressure. The aorta and major arteries tend to harden with age. As the heart pumps against a stiffer aorta, the systolic pressure increases,
leading to a widened pulse pressure. With many older people, both the systolic and diastolic pressures increase, making it difficult to distinguish
expected aging values from abnormal hypertension.
Additional Techniques
Measurement of Oxygen Saturation
The pulse oximeter is a noninvasive method to assess arterial oxygen saturation (SpO2). A sensor attached to the person’s finger, forehead, or earlobe
has a diode that emits light and a detector that measures the relative amount of light absorbed by oxyhemoglobin (HbO2) and unoxygenated
(reduced) hemoglobin (Hb). The pulse oximeter compares the ratio of light emitted with light absorbed and converts this ratio into the percentage of
oxygen saturation. Because it measures only light absorption of pulsatile flow, the result is SpO2. A healthy person with no lung disease normally
has a SpO2 of 97% to 99% on room air, but a value of >95% is clinically acceptable in the presence of a normal hemoglobin.
14
Select the appropriate pulse oximeter probe. The finger probe is spring-loaded and feels like a clothespin attached to the finger, but it does not
hurt (Fig. 10.11). An infant usually has a probe taped to the large toe. Some clinics use single-use probes that stick to the finger, forehead, or ear
instead of the multipatient-use spring-loaded model. If you are using a finger, make sure that the hand is warm to prevent false low readings
caused by vasoconstriction. At lower oxygen saturations, the earlobe probe is more accurate.
10.11 (© Pat Thomas, 2014.)
The probe will show both the oxygen saturation and the pulse. Make sure that the pulse reading you see on the pulse oximeter matches the palpated
pulse. If it does not correlate with the palpated pulse, question the accuracy of the result.
Electronic Vital Signs Monitor
An automated vital signs monitor is in frequent use in hospital and clinic settings, especially when frequent BP measurement is needed. The
artery pulsations create vibrations that are detected by an electronic sensor. The BP mode is noninvasive, fast, and has automatic measurement
intervals and a bright numeric display. As with manual BP equipment, accuracy depends on correct cuff selection and placement. If the numeric
display does not fit with the patient’s clinical picture, always validate the measurement with a manual sphygmomanometer and your own
stethoscope. Some electronic BP devices also have probes for thermometry and pulse oximetry (Fig. 10.12).
10.12
253
The Doppler Technique
In many situations pulse and BP measurement are enhanced by using an electronic device, the Doppler ultrasonic flowmeter. The Doppler technique
works by a principle discovered in the 19th century by an Austrian physicist, Johannes Doppler. Sound varies in pitch in relation to the distance
between the sound source and the listener; the pitch is higher when the distance is small, and the pitch lowers as the distance increases. Think of a
railroad train speeding toward you; its train whistle sounds higher the closer it gets, and the pitch of the whistle lowers as the train fades away.
In this case the sound source is the blood pumping through the artery in a rhythmic manner. A handheld transducer picks up changes in sound
frequency as the blood flows and ebbs, and it amplifies them. The listener hears a whooshing pulsatile beat.
The Doppler technique is used to locate the peripheral pulse sites (see Chapter 21 for further discussion). For BP measurement the Doppler
technique will augment Korotkoff sounds (Fig. 10.13). Through this technique you can evaluate sounds that are hard to hear with a stethoscope
such as those in critically ill individuals with a low BP, infants with small arms, and obese persons in whom the sounds are muffled by layers of
fat. In addition, proper cuff placement is difficult on the obese person’s cone-shaped upper arm. In this situation you can place the cuff on the
more even forearm and hold the Doppler probe over the radial artery. For either location, use the following procedure:
10.13
• Apply coupling gel to the transducer probe.
• Turn Doppler flowmeter on.
• Touch the probe to the skin, holding it perpendicular to the artery.
• A pulsatile whooshing sound indicates location of the artery. You may need to rotate the probe, but maintain contact with the skin. Do not push
the probe too hard or you will occlude the pulse.
• Inflate the cuff until the sounds disappear; then proceed another 20 to 30 mm Hg beyond that point.
• Slowly deflate the cuff, noting the point at which the first whooshing sounds appear. This is the systolic pressure.
• It is difficult to hear the muffling of sounds or a reliable disappearance of sounds indicating the diastolic pressure (phases IV and V of Korotkoff
sounds). However, the systolic pressure alone gives valuable data on the level of tissue perfusion and blood flow through patent vessels.
254
Documentation and Critical Thinking
Sample Charting
K.A. is a 56-year-old male construction worker who appears healthy and of stated age. Alert,
oriented, cooperative, with no signs of distress. Ht 170 cm (5 ft 7 in). Wt 83 kg (182 lb). BMI 28.5
(overweight). Temp 98.6° F (37° C). Pulse 84 bpm, regular rhythm, force 2+. Resp 14/min, easy,
unlabored. BP 146/84 mm Hg right arm, sitting.
Clinical Case Study 1a
G.S. is a 76-year-old female retired secretary, previously in good health, who is brought to the ED
by her 83-year-old husband. G.S. and her husband report nausea, vomiting, diarrhea, and
abdominal cramping since last night. Symptoms began after eating “bad food” at a buffet-style
restaurant. G.S.’s husband reports that his symptoms have improved. G.S. continues to have
diarrhea and dry heaving.
Subjective
G.S. reports extreme fatigue, weakness, and dizziness with position changes: “Feels like I’m going
to black out.” Severe nausea and vomiting; thirsty but cannot keep anything down; even sips of
water result in “dry heaves.” Cramping, intermittent abdominal pain. Watery brown diarrhea,
profuse during the night, somewhat diminished now.
Objective
Vital signs: Temp 100.1° F (37.8° C). BP (supine) 102/64 mm Hg. Pulse (supine) 70 bpm,
regular rhythm. Resp 18/min, unlabored. Helped to seated, leg-dangling position. Vitals: BP
74/52 mm Hg. Pulse 138 bpm, regular rhythm. Resp 20/min, unlabored. Skin pale and moist
(diaphoretic). Reports light-headed and dizzy in seated position. Returned to supine.
Respiratory: Breath sounds clear in all fields; no adventitious sounds.
Cardiovascular: Regular rate (70 bpm) and rhythm when supine, S1 and S2 are not accentuated
or diminished, no extra sounds. All pulses present, 2+ and equal bilaterally. Carotids 2+
with no carotid bruit.
Abdomen: Bowel sounds hyperactive, skin pale and moist, abdomen soft and mildly tender to
palpation. No enlargement of liver or spleen.
Neuro: Level of consciousness alert and oriented; pupils equal, round, react to light and
accommodation. Sensory status normal. Mild weakness in arms and legs. Gait and standing
leg strength not tested because of weakness. Deep tendon reflexes 2+ and equal bilaterally.
Babinski reflex → down-going toes.
Assessment
Orthostatic hypotension, orthostatic pulse increase, and syncopal symptoms
Hypovolemia
Diarrhea
Fever
Deficient fluid volume
Clinical Case Study 2
G.H. is a 31-year-old male with no significant past medical history. Family history includes a
255
mother with diabetes; father with hypertension diagnosed at age 40 years; and paternal
grandfather with myocardial infarction at age 50, stroke at age 62, and heart failure diagnosed at
age 51. G.H. presents to the ED with blurred vision and headache for the past 24 hours. He appears
anxious but denies pain other than his headache.
Subjective
Blurred vision for the past 24 hours that gets worse with activity. Frontal lobe headache that “comes
and goes” for the past 24 hours. Denies nausea, vomiting. Reports occasional dizziness.
Objective
Vital signs: Temp 98.6° F (37° C). BP 210/112 mm Hg right arm, sitting; 220/120 mm Hg left
arm, sitting. Pulse 110 bpm, regular rhythm, force 3+. RR 20/min, unlabored.
Respiratory: Breath sounds clear throughout; no adventitious sounds.
Cardiovascular: Regular rate and rhythm. S1 and S2 not accentuated or diminished, no extra
sounds. Pulses bounding 3+ bilateral. 2+ pitting edema bilateral lower extremities.
Abdomen: Rounded abdomen. Bowel sounds active. Abdomen soft, nontender.
Neuro: Level of consciousness alert and oriented. Pupils equal; sluggish reaction to light.
Optic disc swollen. Deep tendon reflexes 2+ and equal bilaterally. Babinski reflex → down-
going toes.
Assessment
Hypertensive urgency
Risk for stroke and myocardial ischemia
Pain
Decreased cardiac output
Clinical Case Study 3
J.T. is a 4-month-old girl brought to the pediatric clinic by her mother. Until 2 days PTA, she has
been in good health. She has had diarrhea, vomiting, and decreased intake for 2 days. J.T.’s mother,
father, and 3-year-old brother all had the same symptoms but are now improved.
Subjective
J.T. has less diarrhea and no vomiting today, but she doesn’t want to breastfeed and still appears to
be “more sleepy than usual and just not herself.” Her mother reports, “Now that I think about it,
J.T. has only had 1 or 2 wet diapers since yesterday.”
Objective
Vital signs: Temp 99.5° F (37.5° C, rectally). BP 68/46 mm Hg (while lying being held). Pulse
(apical) while sleeping 164 bpm, rhythm regular, force 2+. Resp 56/min. Weight 11 lb, 4 oz
(5.2 kg).
General appearance: Listless, pale; appears to be sleeping in mother’s arms and awakens to
physical stimuli but does not cry.
HEENT: Anterior fontanel sunken; dry oral mucosa; no tear production.
Cardiovascular: Tachycardia; no abnormal heart sounds; femoral pulses 1+ = bilat.
Respiratory: Tachypnea. Pulse oximetry 94% on room air. Breath sounds clear in all fields and
= bilat; no adventitious sounds.
Abdomen: Hyperactive bowel sounds; no palpable masses.
Extremities: Cool, decreased pulse, cap refill 4 sec.
256
Assessment
Dehydration
Diarrhea
Electrolyte imbalance
Fever
257
Abnormal Findings
TABLE 10.5
Hypotension
In normotensive adults: <95/60 mm Hg
In hypertensive adults: < The person's average reading, but >95/60 mm Hg
In children: < Expected value for age
Occurs With Rationale
Acute myocardial infarction Decreased cardiac output
Shock Decreased cardiac output
Hemorrhage Decrease in total blood volume
Vasodilation Decrease in peripheral vascular resistance
Addison disease (hypofunction of adrenal glands) Decrease in circulating aldosterone
Associated Symptoms and Signs
In conditions of decreased cardiac output, a low BP is accompanied by an increased pulse, dizziness, diaphoresis, confusion, and blurred
vision. The skin feels cool and clammy because the superficial blood vessels constrict to shunt blood to the vital organs. An individual
having an acute MI may also complain of substernal chest pain, epigastric pain, shoulder or jaw pain, and any number of nonspecific
symptoms (e.g., fatigue).
Table 10.6
Essential or Primary Hypertension
Primary hypertension has no known cause but is responsible for about 95% of cases of hypertension in adults. Normal BP in adults is
<120/<80. BP 120-129/<80 is considered elevated, and lifestyle modifications should be implemented.
Summary of Blood Pressure Guidelines
Target BP Initial Treatment Special Considerations
ACC/AHA
Task Forcea
<130/80 mm Hg In patients without cardiovascular disease (CVD)
and 10-year atherosclerotic CVD risk of <10%, begin
treatment ≥140/90 mm Hg
In patients with CVD or 10-year atherosclerotic
CVD risk ≥10%, begin treatment ≥130/80 mm Hg
Consider lower BP targets for high-risk
individuals, such as those with diabetes or
chronic kidney disease (CKD).
JNC-8
Guidelinesb
Adults ≥60 yr:
<150/90 mm Hg
Adults <60 yr
with diabetes or
CKD: <140/90 mm
Hg
Adults <60 yr:
<140/90 mm Hg
Lifestyle modification and pharmacologic therapy,
beginning with thiazide diuretics, CCB, ACEI, or ARB in
non–African-American patients
Initial treatment for African-American
patients is a CCB or a thiazide diuretic.
CKD patients should begin with an ACEI
or ARB.
Cardiovascular Risk Stratification in Patients With Hypertension
Major Risk Factors Target Organ Damage/Clinical Cardiovascular Disease
Smoking
Dyslipidemia
Diabetes mellitus
Age >60 yr
Gender (men and postmenopausal women)
Family history of cardiovascular disease: women <65 yr or men <55 yr
Heart diseases
Left ventricular atrophy
Angina or prior myocardial infarction
Prior coronary revascularization
Heart failure
Stroke or transient ischemic attack
Nephropathy
Peripheral arterial disease
Retinopathy
Lifestyle Modifications for Hypertension Prevention and Management
• Lose weight if overweight
• Limit alcohol intake to no more than 1 oz (30 mL) of ethanol (e.g., 24 oz [720 mL] of beer, 10 oz [300 mL] of wine, or 2 oz [60 mL] of 100-
proof whiskey) per day or 0.5 oz (15 mL) of ethanol per day for women and lighter-weight people.
• Increase aerobic physical activity (30-45 min most days of the week).
• Reduce sodium intake to no more than 100 mmol/day (2.4 g of sodium or 6 g of sodium chloride).
• Maintain adequate intake of dietary potassium (approximately 90 mmol/day).
• Maintain adequate intake of dietary calcium and magnesium for general health.
• Stop smoking and reduce intake of dietary saturated fat and cholesterol for overall cardiovascular health.
aWhelton, P. K., Carey, R. M., Aronow, W. S., et al. (2017). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/
ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults.
Journal of the American College of Cardiology. doi: 10.1016/j.jacc.2017.11.006
bJames, P. A., Oparil, S., & Carter, B. L. (2014). 2014 Evidence-based guidelines for the management of high blood pressure in
adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA, 311, 507-520.
ACEI, Angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker.
258
259
References
1. Agency for Healthcare Research and Quality. Tool 3F: Orthostatic vital sign
measurement.
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/fallpxtk-
tool3f.html; 2013.
2. Allegaert K, Casteels K, van Gorp I, et al. Tympanic, infrared skin, and temporal
artery scan thermometers compared with rectal measurement in children: A real-
life assessment. Curr Ther Res Clin Exp. 2014;76:34–38.
3. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017
update: A report from the American Heart Association. Circulation.
2017;135:e146–e603.
4. CDC. Assessment: Measuring orthostatic blood pressure.
https://www.cdc.gov/steadi/pdf/measuring_orthostatic_blood_pressure-a ;
2017.
5. Flynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for
screening and management of high blood pressure in children and adolescents.
http://pediatrics.aappublications.org/content/pediatrics/early/2017/08/21/peds.2017-
1904.full ; 2017.
6. Hollerbach AD, Sneed NV. Accuracy of radial pulse assessment by length of
counting interval. Heart Lung. 1990;19(3):258–264.
7. James PA, Oparil S, Carter BL. 2014 Evidence-based guidelines for the
management of high blood pressure in adults: Report from the panel members
appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–
520.
8. Juraschek SP, Daya N, Rawlings AM, et al. Comparison of early versus late
orthostatic hypotension assessment times in middle-age adults. JAMA Intern
Med. 2017;177:1316–1323.
9. Liu C, Griffiths C, Murray A, et al. Comparison of stethoscope bell and
diaphragm, and of stethoscope tube length, for clinical blood pressure
measurement. Blood Press Monit. 2016;21(3):178–183.
10. McGee S. Evidence-based physical diagnosis. 4th ed. Elsevier: St. Louis; 2018.
11. Niven DJ, Gaudet JE, Laupland KB, et al. Accuracy of peripheral thermometers
for estimating temperature: A systematic review and meta-analysis. Ann Intern
Med. 2015;163:768–777.
12. van Velthoven MH, Holewijn S, van der Wilt GJ, et al. Does wave reflection
explain the increase in blood pressure during leg crossing? Blood Press Monit.
2014;19(3):129–133.
13. Whelton PK, Carey RM, Aronow WS, et al. 2017
ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA Guideline
for the prevention, detection, evaluation, and management of high blood
pressure in adults. J Am Coll Cardiol. 2017; 10.1016/j.jacc.2017.11.006.
14. Wiegand DL. AACN procedure manual for high acuity, progressive, and critical care.
7th ed. Elsevier: St. Louis; 2016.
aPlease note that space does not allow a detailed plan for each clinical case study in this text. Please
use these case studies as critical-thinking exercises and consult the appropriate text for current
treatment plan.
260
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/fallpxtk-tool3f.html
https://www.cdc.gov/steadi/pdf/measuring_orthostatic_blood_pressure-a
http://pediatrics.aappublications.org/content/pediatrics/early/2017/08/21/peds.2017-1904.full
http://dx.doi.org/10.1016/j.jacc.2017.11.006
261
C H A P T E R 1 1
262
Pain Assessment
263
Structure and Function
Pathologic pain develops by two main processes: nociceptive (Fig. 11.1) and/or neuropathic
processing. It is important to understand how these two types of pain develop because patients
present with distinguishing sensations and respond differently to analgesics. An accurate pain
assessment allows clinicians to more accurately select effective pharmacologic and
nonpharmacologic strategies to interrupt the pain processing along multiple points within the pain
messaging system and ultimately provide improved pain relief.
11.1
Neuroanatomic Pathway
Pain is a highly complex and subjective experience that originates from the central nervous system
(CNS) and/or peripheral nervous system (PNS). Specialized nerve endings called nociceptors are
designed to detect painful sensations from the periphery and transmit them to the CNS.
Nociceptors are located primarily within the skin; joints; connective tissue; muscle; and thoracic,
abdominal, and pelvic viscera. These nociceptors can be stimulated directly by mechanical or
thermal trauma or secondarily by chemical mediators that are released from the site of tissue
damage.
Nociceptors carry the pain signal to the CNS by two primary sensory (or afferent) fibers: Aδ and
264
C fibers (see Fig. 11.1). Aδ fibers are myelinated and larger in diameter; thus they transmit the pain
signal rapidly to the CNS. The sensation is localized, short term, and sharp in nature because of the
Aδ fiber stimulation. In contrast, C fibers are unmyelinated and smaller, and they transmit the
signal more slowly. The “secondary” sensations are diffuse and aching, and they last longer after
the initial injury.
Peripheral sensory Aδ and C fibers enter the spinal cord by posterior nerve roots within the
dorsal horn by the tract of Lissauer. The fibers synapse with interneurons located within a specified
area of the cord called the substantia gelatinosa. A cross section shows that the gray matter of the
spinal cord is divided into a series of consecutively numbered laminae (layers of nerve cells) (see
Fig. 11.1). The substantia gelatinosa is lamina II, which receives sensory input from various areas of
the body. The pain signals then cross over to the other side of the spinal cord and ascend to the
brain by the anterolateral spinothalamic tract. When pain is poorly controlled over an extended
period of time, structural plasticity and reorganization of pain pathways occur. Cells within the
dorsal horn become altered in size and function, and this damage is associated with nociceptive
hypersensitivity.15
Nociceptive Pain
Nociceptive pain develops when functioning and intact nerve fibers in the periphery and the CNS are
stimulated. It is triggered by events outside the nervous system from actual or potential tissue
damage. Nociception can be divided into four phases: (1) transduction, (2) transmission, (3)
perception, and (4) modulation (Fig. 11.2).
11.2
Initially the first phase of transduction occurs when a noxious stimulus in the form of traumatic
or chemical injury, burn, incision, or tumor takes place in the periphery. The periphery includes the
265
skin and the somatic and visceral structures. These injured tissues then release a variety of
chemicals, including substance P, histamine, prostaglandins, serotonin, and bradykinin. These
chemicals are neurotransmitters that transmit a pain message, or action potential, along sensory
afferent nerve fibers to the spinal cord. These nerve fibers terminate in the dorsal horn of the spinal
cord. Because the initial afferent fibers stop in the dorsal horn, a second set of neurotransmitters
carries the pain impulse across the synaptic cleft to the dorsal horn neurons. These
neurotransmitters include substance P, glutamate, and adenosine triphosphate (ATP).
In the second phase, known as transmission, the pain impulse moves from the level of the spinal
cord to the brain. At the site of the synaptic cleft within the spinal cord are opioid receptors that can
block pain signaling with endogenous opioids or with exogenous opioids if they are administered.
However, if not stopped, the pain impulse moves to the brain via various ascending fibers within
the spinothalamic tract to the thalamus. Once the pain impulse moves through the thalamus, the
message is dispersed to higher cortical areas via mechanisms that are not clearly understood at this
time.
The third phase, perception, signifies the conscious awareness of a painful sensation. Cortical
structures such as the limbic system account for the emotional response to pain, and somatosensory
areas can characterize the sensation. Only when the noxious stimuli are interpreted in these higher
cortical structures can the sensation be identified as “pain.”
Last, the pain message is inhibited through the phase of modulation. Fortunately our bodies have
a built-in mechanism that will eventually slow down and stop the processing of a painful stimulus.
If not for pain modulation, the experience of pain would continue from childhood injuries to
adulthood. To inhibit and block the pain impulse, descending pathways from the brainstem to the
spinal cord release a third set of neurotransmitters that produce an analgesic effect. These
neurotransmitters include serotonin, norepinephrine, neurotensin, γ-aminobutyric acid (GABA),
and our own endogenous opioids—β-endorphins, enkephalins, and dynorphins.
Normal nociceptive processing is protective and can be a warning signal that injury is about to or
has taken place.1 We quickly learn to move our hand away from a hot stove. Other examples of
nociceptive pain include a skinned knee, kidney stones, menstrual cramps, muscle strain,
venipuncture, or arthritic joint pain. Nociceptive pain is typically predictable and time limited
based on the extent of the injury.
Neuropathic Pain
Neuropathic pain is pain that does not adhere to the typical and rather predictable phases in
nociceptive pain. It is pain due to a lesion or disease in the somatosensory nervous system.13
Neuropathic pain implies an abnormal processing of the pain message from an injury to the nerve
fibers. This type of pain is the most difficult to assess and treat. Pain is often perceived long after the
site of injury heals, and it evolves into a chronic condition.
Nociceptive pain can change into a neuropathic pain pattern over time when pain has been
poorly controlled. This is because of the constant irritation and inflammation caused by a pain
stimulus, which alters nerve cells, making them more sensitive to any future stimulus.
Conditions that may cause neuropathic pain include diabetes mellitus, herpes zoster (shingles),
HIV/AIDS, sciatica, trigeminal neuralgia, phantom limb pain, and chemotherapy. Further examples
include CNS lesions such as stroke, multiple sclerosis, and tumor. Pain sustained on a
neurochemical level cannot be identified by x-ray image, computerized axial tomography (CAT)
scan, or traditional magnetic resonance imaging (MRI). Recent advances in noninvasive
neuroimaging techniques allow us to study the structural, functional, and neurochemical changes in
the brain caused by nociception.20 Pain researchers are using functional MRI (fMRI) to visualize
changes in brain activity while patients experience pain. When these images are shown to patients
in real time, patients can learn to use neurofeedback to help control pain. Researchers are able to
better understand how pain is processed and how cognitive influences (e.g., fear, anxiety) impact
the experience of pain.20
The abnormal processing of the neuropathic pain impulse can be continued by the PNS or CNS.
An injury to peripheral neurons can result in spontaneous and repetitive firing of nerve fibers,
almost seizurelike in activity (Fig. 11.3). Neuropathic pain may be sustained centrally in a
phenomenon known as neuronal “wind-up.” Central neuron hyperexcitability leads to maintenance
of neuropathic pain. In neuropathic pain, minor stimuli cause significant pain.2
266
11.3
Sources of Pain
Physical pain sources are based on their origin. Visceral pain originates from the larger internal
organs (i.e., stomach, intestine, gallbladder, pancreas). It often is described as dull, deep, squeezing,
or cramping. The pain can stem from direct injury to the organ or stretching of the organ from
tumor, ischemia, distention, or severe contraction. Examples of visceral pain include ureteral colic,
acute appendicitis, ulcer pain, and cholecystitis. The pain impulse is transmitted by ascending nerve
fibers along with nerve fibers of the autonomic nervous system (ANS). That is why visceral pain
often presents along with autonomic responses such as vomiting, nausea, pallor, and diaphoresis.
Somatic pain originates from musculoskeletal tissues or the body surface. Deep somatic pain
comes from sources such as the blood vessels, joints, tendons, muscles, and bone. Pain may result
from pressure, trauma, or ischemia. Cutaneous pain is derived from skin surface and subcutaneous
tissues. Deep somatic pain often is described as aching or throbbing, whereas cutaneous pain is
superficial, sharp, or burning. Whether somatic pain is sharp or dull, it is usually well localized and
easy to pinpoint. Somatic pain, like visceral pain, can be accompanied by nausea, sweating,
tachycardia, and hypertension caused by the ANS response.
Pain that is felt at a particular site but originates from another location is known as referred pain.
Both sites are innervated by the same spinal nerve, and it is difficult for the brain to differentiate the
point of origin. Referred pain may originate from visceral or somatic structures. Various structures
maintain their same embryonic innervation. For example, an inflamed appendix in the right lower
quadrant of the abdomen may have referred pain in the periumbilical area, or the pain from acute
coronary syndrome may be felt in the left arm or neck. Please know the areas of referred pain for
diagnostic purposes (see Table 22.3, Common Sites of Referred Abdominal Pain).
Types of Pain
Pain can be classified by its duration into acute or chronic categories (chronic is called persistent
because it carries a less negative, malingering connotation). The duration provides information on
possible underlying mechanisms and treatment decisions.
Acute pain is short term and self-limiting, often follows a predictable trajectory, and dissipates
after an injury heals. Examples of acute pain include surgery, trauma, and kidney stones. Acute
pain has a self-protective purpose; it warns the individual of actual or threatened tissue damage.
Incident pain is an acute type that happens predictably when certain movements take place.
Examples include pain in the lower back on standing or whenever turning a hospitalized patient
from side to side.
In contrast, chronic (persistent) pain is diagnosed when the pain continues for 6 months or
longer. Chronic pain can be divided into malignant (cancer-related) and nonmalignant. Malignant
pain often parallels the pathology created by the tumor cells. The pain is induced by tissue necrosis
267
or stretching of an organ by the growing tumor. It fluctuates within the course of the disease.
Chronic nonmalignant pain is often associated with musculoskeletal conditions such as arthritis,
low back pain, or fibromyalgia.
Chronic pain does not stop when the injury heals. It persists after the predicted trajectory. It
outlasts its protective purpose, and the level of pain intensity does not correspond with the physical
findings. Unfortunately many chronic pain sufferers are not believed by clinicians and are labeled
as malingerers, attention seekers, or drug seekers. Chronic pain originates from abnormal
processing of pain fibers from peripheral or central sites.2
Finally breakthrough pain is a transient spike in pain level, moderate to severe in intensity, in an
otherwise controlled pain syndrome. It can result from end-of-dose medication failure. This occurs
when a patient taking a long-acting opioid has a recurrence of pain before the next scheduled dose.
Treatment of end-of-dose failure includes shortening the interval between doses or increasing the
dose of medication. Breakthrough pain can also be the result of incident or episodic pain. This is a
predictable breakthrough pain that may be triggered by a physical stimulus such as a return to
activity after a surgery or from a psychosocial event.
The experience of pain is a complex biopsychosocial phenomenon. We are just now developing
an understanding of pain at the cellular level, but more research is needed to fully understand the
complexities of the pain experience. We still rely on patient report as the best indicator of pain, but
researchers continue to explore whether pain and certain objective measures (e.g., biomarkers) are
associated with one another.9 When treating patients with acute or chronic pain, it is important to
frequently reassess pain scores to evaluate the effectiveness of the therapy used. It is also important
to talk to the patient about what pain score they consider tolerable.
Developmental Competence
Infants have the same capacity for pain as adults. In fetal development ascending sensory fibers,
neurotransmitters, and connections to the thalamus are developed by 20 weeks' gestation.
However, the immaturity of the cortex and lack of conscious awareness may prevent the fetus from
experiencing emotional “pain” until 30 weeks' gestation. Conscious or not, pain-producing invasive
fetal procedures elicit a stress response, and pain during gestation should be avoided until more is
known about fetal pain. If invasive procedures must be performed on a developing fetus, adequate
analgesia is necessary.24
Inhibitory neurotransmitters are insufficient until birth at full term. Therefore the preterm infant
is rendered more sensitive to painful stimuli. Preverbal infants are at high risk for undertreatment
of pain in part because of persistent myths and beliefs that infants do not remember pain. In fact,
current evidence suggests that repetitive and poorly controlled pain in infants can result in changes
in the CNS that lead to pain hypersensitivity later in life. Regardless of age, adequate analgesia use
during painful procedures is necessary.2
The Aging Adult
No evidence exists to suggest that older individuals perceive pain to a lesser degree or that
sensitivity is diminished. Although pain is a common experience among individuals 65 years of age
and older, it is not a normal process of aging. Pain indicates pathology or injury. It should never be
considered something to tolerate or accept in one's later years.
Unfortunately many clinicians and older adults wrongfully assume that pain should be expected
in aging, which leads to underreporting of pain and less aggressive treatment. Older adults may
have additional fears about becoming dependent, undergoing invasive procedures, taking pain
medications, and having a financial burden. The most common pain-producing conditions for aging
adults include pathologies such as osteoarthritis, osteoporosis, peripheral vascular disease, cancer,
peripheral neuropathies, angina, and chronic constipation.
Dementia does not impact the ability to feel pain, but it does impact the person's ability to
effectively use self-report instruments. Approximately 50% of patients with dementia experience
pain.10 In patients with dementia we can assess body language instead of verbal communication
(e.g., a clenched fist may indicate pain; agitation may mean hunger or cold). See further discussion
on pain assessment with dementia on p. 173.
Gender Differences
268
Gender differences are influenced by societal expectations, hormones, and genetic makeup.
Traditionally men have been raised to be more stoic about pain, and more affective or emotional
displays of pain are accepted for women. Hormonal changes have strong influences on pain
sensitivity for women. Regarding migraine, the prevalence is equal in prepubertal girls and boys,
but after puberty migraine headaches are 2 to 3 times more common in women.4 Women have
greater pain sensitivity than men with multiple biopsychosocial mechanisms contributing to
differences in pain. Chronic pain is also more prevalent in women than in men.16
Culture and Genetics
When clinicians speak a language or belong to a culture different from their patient in pain, the risk
increases for misunderstanding, underreporting, and undertreating. Please review the methods for
working with an interpreter in Chapter 3 and the discussion on cultural variations in Chapter 2.
Also adopt the habit of asking each patient how he or she typically behaves when in pain.
Most of the research conducted on racial differences and pain has focused on the disparity in the
management of pain for various racial groups (i.e., comparing pain treatment for minority
individuals [e.g., African Americans, Asians, Latinos] with the standard treatment for all
individuals with similar injuries or diseases). Pain-related disparities continue to exist, with
members of minority groups receiving less quality pain care than non-Hispanic whites.22,25 Poorly
treated pain has devastating results for the patient, with huge costs to society in losses of wages and
productivity.
The experience of pain is more layered than just physical suffering. Pain and the expression of
pain are influenced by social, cultural, emotional, and spiritual concerns. It is imperative that you
do a thorough pain assessment on all patients, recognizing that a lack of outward signs of pain does
not indicate an absence of pain. Ask open-ended questions and develop rapport before pain
screening.22
The Opioid Epidemic
In 2017 the U.S. Department of Health and Human Services declared the opioid crisis a public
health emergency and announced a strategy to combat the epidemic. The use of opioids began to
increase in the late 1990s as drug companies assured the medical community that prescription
opioids were safe and effective. While opioid medications are effective in the management of severe
pain, they also cause a variety of side effects based on the mechanism of action and location of
receptors.
Opioid medications must connect with mu-opioid receptors to achieve pain-relieving effects. Mu-
opioid receptors are located throughout the body. There are high concentrations of mu-opioid
receptors in the brain, including in the periaqueductal gray region, the thalamus, the cingulate
cortex, and the insula; these receptors regulate pain perception.28 Further, mu receptors in the
amygdala mediate the emotional response to pain, and mu receptors in the ventral tegmental area
and nucleus accumbens mediate the perception of well-being and pleasure. Thus, opioid
medications produce pain relief and euphoria. As to the side effects of opioid medications, mu
receptors in the brainstem lead to the concern of respiratory depression, and mu receptors in the
small intestine produce troublesome constipation (Fig. 11.4). Mu receptors in the dorsal horn of the
spinal cord and peripheral nerves modulate the perception of pain.
269
11.4 Response of mu receptor activation. (Pat Thomas, 2018)
Mu receptors are also responsible for the physical dependence associated with continued use of
opioid pain medications.23,28 Physical dependence means only that repeated dosing will lead to a
predictable physical reaction when the drug is withdrawn abruptly; this is not the same as
addiction. Certainly the stimulation of mu receptors in the reward center of the brain can lead to
addiction, especially when opioids are delivered rapidly, as happens when persons use opioids for
pleasure and reward or can happen to persons in pain after months of opioid medication
exposure.28
As prescription of opioid medications increased, misuse of the medications also increased. While
research on pain indicates that the amount of pain experienced is stable, the prescription of opioids
has quadrupled. In 2016, 116 people died every day due to opioid-related overdose, and 11.5
million Americans misused prescription opioids.5,21,26 In addition to overuse of opioid pain
medications, the use of heroin has tripled since 2010,8 and 75% of new heroin users report abusing
prescription opioids first.5
Opioid pain medications are indispensable in treating certain types of pain (e.g., cancer pain, end-
of-life pain). Providers are now advised not to use opioid pain medications as a first line for chronic
pain, but instead to look to other treatment options.8 While the opioid epidemic is a public health
crisis, we must also recognize that patients in pain need adequate pain management. Refusing to
prescribe appropriate medications to those in severe pain will not end the epidemic.6,11 Ensuring
adequate pain management competencies and appropriate education on opioid prescribing is
necessary for all providers to stop the epidemic while assuring that patients receive appropriate
treatment.6
270
Subjective Data
Pain is defined as an “unpleasant sensory and emotional experience associated with actual or
potential tissue damage, or described in terms of such damage.”12
Pain is a subjective experience and as such the person's report is the most reliable indicator of
pain. Because pain occurs on a neurochemical level, the diagnosis of pain cannot be made
exclusively on physical examination findings, although these findings can lend support. Self-report
is the gold standard of pain assessment.
Examiner Asks/Rationale
Initial Pain Assessment
1. Do you have pain? Discomfort or soreness? Ouch? Tell me in
your own words.
Some people report pain only when it is severe. Try a variety of words.
2. Where is your pain? Tell me about all of the places that have
pain.
Pain may be localized or occur in multiple sites.
3. When did your pain start? What were you doing when the
pain started? Is it constant or does it come and go?
Identifies onset and duration. Chronic pain persists after injury heals; it
is pain that occurs for 6 months or longer.
4. What does your pain feel like?
• Burning, stabbing, aching
• Throbbing, firelike, squeezing
• Cramping, sharp, itching, tingling
• Shooting, crushing, sharp, dull
Identifies quality of pain and helps differentiate between nociceptive
and neuropathic pain mechanisms.
Neuropathic pain is described as burning, shooting, and tingling.
Nociceptive pain originating from visceral sites is described as
aching if localized and cramping if poorly localized; from somatic
sites, it is described as throbbing/aching.
5. How much pain do you have now? Identifies intensity (refer to various intensity scales).
6. What makes your pain better or worse? (Include behavioral,
pharmacologic, and nonpharmacologic interventions.) What
medications control your pain? Are doses adequate? How often
do you take pain medication?
Identifies alleviating and aggravating factors. Evaluates effectiveness of
current treatment.
7. How does pain limit your function or activities? What does
pain prevent you from doing?
Identifies degree of impairment and quality of life.
8. How do you usually react when you are in pain? Any other
symptoms along with the pain (nausea, vomiting, dizziness,
heart racing)? How would others know that you are in pain?
Nonverbal behaviors are extremely variable, especially for chronic pain
syndromes. Aids in detection and assessment.
9. What does this pain mean to you? Why do you think you are
having pain?
Can identify myths, misconceptions, beliefs such as “I'm getting old”;
“It's a punishment from God.”
Alternatively you can collect a complete pain health history using
the PQRST mnemonic described in Table 11.1.
TABLE 11.1
PQRST Method of Pain Assessment
P = Provocation/Palliation
What were you doing when the pain started? What caused it? What makes it better? Worse? What seems to trigger it? Stress? Position?
Certain activities?
What relieves it? Medications, massage, heat/cold, changing position, being active, resting?
What aggravates it? Movement, bending, lying down, walking, standing?
Q = Quality/Quantity
What does it feel like? Use words to describe the pain, such as sharp, dull, stabbing, burning, crushing, throbbing, nauseating, shooting,
twisting, or stretching.
R = Region/Radiation
Where is the pain located? Does it radiate? Where? Does it feel as if it travels/moves around? Did it start elsewhere and is now localized to
one spot?
S = Severity Scale
How severe is the pain on a scale of 0 to 10, with zero being no pain and 10 being the worst pain ever? Does it interfere with activities? How
bad is it at its worst? Does it force you to sit down, lie down, slow down? How long does an episode last?
T = Timing
When/at what time did the pain start? How long did it last? How often does it occur: hourly? daily? weekly? monthly? Is it sudden or
gradual? What were you doing when you first experienced it? When do you usually experience it: daytime? night? early morning? Are
you ever awakened by it? Does it lead to anything else? Is it accompanied by other signs and symptoms? Does it ever occur before, during,
or after meals? Does it occur seasonally?
From Crozer Keystone Center for Nursing Excellence: Best practices: PQRST method facilitates accurate pain assessment.
www.crozerkeystone.org/healthcare-professionals/nursing.
Pain Assessment Tools
Pain is multidimensional in scope, encompassing physical, affective, and functional domains.
Various tools have been developed to capture unidimensional aspects (i.e., intensity) or
271
http://www.crozerkeystone.org/healthcare-professionals/nursing
multidimensional components. Select the pain assessment tool based on its purpose, time involved
in administration, and the patient's ability to comprehend and complete the tool.
Ask the patient to rate and evaluate all of the pain sites. Some forms allow for only one number;
therefore be sure to add additional sites to your documentation. Make sure you use the pain tool
consistently before and after treatment to see whether the treatment was effective. Reassessment of
pain following intervention, whether pharmacologic or nonpharmacologic, is essential to document
pain trajectories alongside various treatments to achieve optimum pain control.
Standardized overall pain assessment tools are more useful for chronic pain conditions or
particularly problematic acute pain problems. A few examples include the Initial Pain Assessment,
the Brief Pain Inventory, and the McGill Pain Questionnaire.
The Initial Pain Assessment17 asks the patient to answer 8 questions concerning location,
duration, quality, intensity, and aggravating/relieving factors. Further, the clinician adds questions
about the manner of expressing pain and the effects of pain that impair one's quality of life (Fig.
11.5).
11.5 (McCaffery, 1999.)
272
The Brief Pain Inventory5a,21a asks the patient to rate the pain within the past 24 hours using
graduated scales (0 to 10) with respect to its impact on areas such as mood, walking ability, and
sleep. The short-form McGill Pain Questionnaire18 asks the patient to rank a list of descriptors in
terms of their intensity and to give an overall intensity rating to his or her pain.
Pain-rating scales are unidimensional and intended to reflect pain intensity. They come in
various forms. They can indicate baseline intensity, track changes, and give some degree of
evaluation to a treatment modality. Numeric rating scales ask the patient to choose a number that
rates the level of pain for each painful site, with 0 being no pain and 10 indicating the worst pain
ever experienced (Fig. 11.6). The use of a numeric rating scale makes the recording of results easy
and consistent between numerous clinicians. The Verbal Descriptor Scale uses words to describe
the patient's feelings and the meaning of the pain for the person. The Visual Analogue Scale lets
the patient make a mark along a 10-cm horizontal line from “no pain” to “worst pain imaginable.”
11.6 (Acute Pain Management Guideline Panel, 1992.)
In general older adults find the numeric rating scale abstract and have difficulty responding,
especially with a fluctuating chronic pain experience. An alternative is the simple descriptor scale
that lists words that describe different levels of pain intensity such as no pain, mild pain, moderate
pain, and severe pain. Older adults often respond to scales in which words are selected. Again it is
essential to teach the person how to use the scale to enhance accuracy.
Tools for Infants and Children
Because infants are preverbal and incapable of self-report, pain assessment depends on behavioral
and physiologic cues. Refer to the Objective Data section. It is important to underscore the point
that infants do feel pain.
Children 2 years of age can report pain and point to its location. They cannot rate pain intensity at
this developmental level. It is helpful to ask the parent or caregiver what words the child uses to
report pain (e.g., boo-boo, owie). Be aware that some children try to be “grown up and brave” and
often deny having pain in the presence of a stranger or if they are fearful of receiving a “shot.”
Rating scales can be introduced at 4 to 5 years of age. The Faces Pain Scale–Revised (FPS-R) has
six drawings of faces that show pain intensity, from “no pain” on the left (score of 0) to “very much
pain” on the right (score of 10) (Fig. 11.7). The FPS-R has realistic facial expressions, with a
furrowed brow and horizontal mouth. It avoids smiles or tears so that children will not confuse
pain intensity with happiness or sadness.12
273
11.7
274
Objective Data
Preparation
The physical examination process can help you understand the nature of the pain. Consider
whether this is an acute or a chronic condition. Recall that physical findings may not always
support the patient's pain reports, particularly for chronic pain syndromes. Based on the patient's
pain report, make every effort to reduce or eliminate the pain with appropriate analgesic and
nonpharmacologic intervention. According to the American Pain Society1, p.5:
When the cause of acute pain is uncertain, establishing a diagnosis is a priority. However,
consideration should be given to starting symptomatic pain treatment as the diagnostic workup
progresses, when appropriate. A comfortable patient is better able to cooperate with diagnostic
procedures.
Equipment Needed
Tape measure to measure circumference of swollen joints or extremities
Tongue blade
Penlight
Normal Range of Findings/Abnormal Findings
Joints
Note the size and contour of the joint. Measure the circumference of the involved
joint for comparison with baseline. Check active or passive range of motion (see
discussion of complete technique beginning on p. 582 in Chapter 23). Joint motion
normally causes no tenderness, pain, or crepitation.
Swelling, inflammation, injury, deformity,
diminished range of motion, increased pain on
palpation, crepitation (audible and palpable
crunching that accompanies movement)
Observe posture; normally it is erect and relaxed. Slumped posture or abdominal guarding with pain
Muscles and Skin
Inspect the skin and tissues for color, swelling, and any masses or deformity. Bruising, lesions, open wounds, tissue damage,
atrophy, bulging, change in hair distribution
To assess for changes in sensation, ask the person to close his or her eyes. Test the
person's ability to perceive sensation by breaking a tongue blade in two lengthwise.
Lightly press the sharp and blunted ends on the skin in a random fashion and ask to
identify it as sharp or dull (see Fig. 24.23). This test will help you identify location
and extent of altered sensation.
Absent pain sensation (analgesia); increased pain
sensation (hyperalgesia); severe pain sensation
evoked with a stimulus that does not normally
induce pain (e.g., the blunt end of the tongue blade,
cotton ball, clothing) (allodynia)
Abdomen
Observe for contour and symmetry. Palpate for muscle guarding and organ size (see
discussion of complete technique beginning on p. 544 in Chapter 22). Note any areas
of referred pain (see Table 22.3).
Swelling, bulging, herniation, inflammation, organ
enlargement
Table 11.2 lists physiologic changes resulting from poorly controlled pain. Be aware that
tachycardia and tachypnea also occur with anxiety and fear and are not specific to pain.7
TABLE 11.2
Physiologic Changes from Poorly Controlled Pain
Pain is not a benign symptom. Poorly controlled acute pain and chronic pain have a negative impact on physiologic systems.
PHYSIOLOGIC SYSTEM ACUTE PAIN RESPONSES
Cardiac Tachycardia
Elevated blood pressure
Increased myocardial oxygen demand
Increased cardiac output
Pulmonary Hypoventilation
Hypoxia
Decreased cough
Atelectasis
Gastrointestinal Nausea
Vomiting
Ileus
Renal Oliguria
Urinary retention
275
Musculoskeletal Spasm
Joint stiffness
Endocrine Increased adrenergic activity
Central nervous system Fear
Anxiety
Fatigue
Immune Impaired cellular immunity
Impaired wound healing
Poorly controlled chronic pain Depression
Isolation
Limited mobility and function
Confusion
Family distress
Diminished quality of life
Nonverbal Behaviors of Pain
When the individual cannot verbally communicate the pain, you can (to a limited extent) identify it
using behavioral cues. Recall that individuals react to painful stimuli with a wide variety of
behaviors. Behaviors are influenced by a wide variety of factors, including the nature of the pain
(acute versus chronic), age, and cultural and gender expectations.
Acute Pain Behaviors
Because acute pain involves autonomic responses and has a protective purpose, individuals
experiencing moderate-to-intense levels of pain may exhibit the following behaviors: guarding,
grimacing, vocalizations such as moaning, agitation, restlessness, stillness, diaphoresis, or change in
vital signs. This list of behaviors is not exhaustive because it should not be used exclusively to deny
or confirm the presence of pain. For example, in a postoperative patient pulse and blood pressure
can be altered by fluid volume, medications, and blood loss.
Chronic (Persistent) Pain Behaviors
People with chronic pain live with the experience for months or years. People adapt to chronic pain
over time, and clinicians cannot look for or anticipate the same acute pain behaviors to exist to
confirm a pain diagnosis.
Chronic pain behaviors have even more variability than acute pain behaviors. People with
chronic pain typically try to give little indication that they are in pain and therefore are at higher
risk for underdetection (Fig. 11.8). Behaviors associated with chronic pain include bracing, rubbing,
diminished activity, sighing, and change in appetite. Whenever possible, it is best to ask the person
how he or she acts or behaves when in pain. Chronic pain behaviors such as spending time with
other people, movement, exercise, prayer, sleeping, or inactivity underscore the more subtle, less
anticipated ways in which people behave when they are experiencing chronic pain (e.g., they use
sleeping to self-distract). Unfortunately, clinical staff may inadvertently interpret this behavior as
“comfort” and fail to follow up with an appropriate pharmacologic intervention.
276
11.8 (Courtesy Rick Brady, Riva, MD.)
Developmental Competence
Infants
Most pain research on infants has focused on acute procedural pain. We have a limited
understanding of how to assess chronic pain in the infant. At this time no one assessment tool
adequately identifies pain in the infant. Using a multidimensional approach for the whole infant is
encouraged. Changes in facial activity and body movements may help. Much effort and time is
spent on decoding facial expressions (e.g., taut tongue, bulging brow, closing of eye fissures), which
may be difficult for the general practitioner to do in a busy clinical setting.
The CRIES score is one tool for postoperative pain in preterm and term neonates.14 It measures
physiologic and behavioral indicators on a three-point scale (Fig. 11.9).
11.9 (Krechel, 1995.)
A second tool often used is the FLACC scale.19 This is a nonverbal assessment tool for infants and
young children under 3 years. The FLACC scale is designed to be simple for practitioners to
administer while providing a reliable and objective assessment of pain.27 The tool assesses five
behaviors of pain: facial expression, leg movement, activity level, cry, and consolability (Fig. 11.10).
277
11.10 (Voepel-Lewis, 2010.)
Because the sympathetic nervous system is engaged particularly in acute episodes of pain,
physiologic changes take place that may indicate the presence of pain. These include sweating,
increases in blood pressure and heart rate, vomiting, nausea, and changes in oxygen saturation.
However, as in the adult, these physiologic changes cannot be used exclusively to confirm or deny
pain because of other factors, such as stress, medications, and fluid balance.
Note that these measures target acute pain. No biological markers have been identified for long-
term chronic pain in infants or children. Therefore evaluate the whole individual. Look for changes
in temperament, expression, and activity. If a procedure or disease process is known to induce pain
in adults (e.g., circumcision, surgery, sickle cell disease, cancer), it will induce pain in the infant or
child.
The Aging Adult
Although pain should not be considered a “normal” part of aging, it is prevalent. When an older
adult reports a history of conditions such as osteoarthritis, peripheral vascular disease, cancer,
osteoporosis, angina, or chronic constipation, be alert and anticipate pain. Older adults often deny
having pain for fear of dependency, further testing or invasive procedures, cost, and fear of taking
pain killers or becoming a drug addict. During the interview you must establish an empathic and
caring rapport to gain trust.
When you look for behavioral cues, look at changes in functional status. Observe for changes in
dressing, walking, toileting, or involvement in activities. A slowness and rigidity may develop, and
fatigue may occur. Look for a sudden onset of acute confusion, which may indicate poorly
controlled pain. However, you will need to rule out other competing explanations, such as infection
or adverse reaction from medications.
People with dementia become less able to identify and describe pain over time, although pain is
still present and destructive. They communicate pain through their behavior. Agitation, pacing, and
repetitive yelling may indicate pain and not a worsening of the dementia. People who are
comfortable do not yell, cry, moan, hit, or kick. When these behaviors occur, consider pain as a
primary explanation.
When asked whether they are having pain, people with dementia may say “no” when in fact they
are very uncomfortable. Words have lost their meaning. Use the PAINAD scale (Fig. 11.11), which
evaluates five common behaviors: breathing, vocalization, facial expression, body language, and
278
consolability.29 Specific behaviors in these categories are quantified from 0 to 2, with a total score
ranging from 0 to 10. This is consistent with the commonly used 0-to-10 metric on other pain tool
scores. For the PAINAD, a score of 4 or more indicates a need for pain management.
11.11 A score of 4 or greater should be reported to the RN for pain intervention. (Warden, 2003.)
279
Documentation and Critical Thinking
Sample Charting
Subjective
Complains of severe epigastric pain within a half-hour of eating greasy, fatty foods, which began
approximately 2 weeks prior to admission. Pain is stabbing and squeezing in nature with radiation
to right shoulder blade. Rates pain as a 10 on a 0-to-10 scale. Nausea accompanies pain. Takes
antacids with minimal relief. Pain diminishes after bringing knees to chest and “not moving” for a
1-hour period.
Objective
Patient diaphoretic, grimacing, and having difficulty concentrating. Breathless during history. Arms
guarding upper abdominal area. Abdomen distended. Severe tenderness noted on light LUQ and
epigastric palpation. Bowel sounds hyperactive in all 4 quadrants.
Assessment
Acute episodic pain
Clinical Case Study 1
J.T. is an 18-year-old male living with sickle cell anemia. Admitted to the ED by his parents
following 4 hours of increasing pain at home.
Subjective
Within the past 48 hours J.T. reports increasing pain in upper- and lower-extremity joints and
swelling of right knee. Reports having “stomach flu” 1 week before with periods of vomiting and
diarrhea. Pain is aching and constant in nature. Rates pain as 10 on a 0-to-10 scale. Reports difficulty
walking and climbing stairs. Taking acetaminophen, two tablets every 4 hours, and using ice packs
with no relief. States, “I have had these before. I always need Dilaudid.”
Objective
Temp 98.6° F (37° C) oral. BP 118/68 mm Hg. Pulse 112 bpm. Resp 24/min.
Facial grimacing and moaning.
Requiring assistance to sit on exam table. Unable to bear weight on right leg. Affect flat;
clenches jaw during position changes. Tenderness localized in elbow, wrist, finger, and knee
joints. Diminished ROM in wrists and knees (right knee 36 cm, left knee 30 cm
circumference). Right knee warm and boggy to touch.
Lungs: Clear to auscultation and percussion.
Heart: S1 and S2 not diminished or accentuated; no murmur.
Abdomen: Bowel sounds present, guarding with tenderness to palpation, RUQ pain with
enlarged spleen at anterior axillary line.
Lab: Hb 9 g/dL. Hct 30%. Indices show sickling with RBCs of varying shapes.
Metabolic panel: Serum bilirubin 2 mg/dL, rest in normal limits.
Assessment
Acute pain
Risk for venous or arterial thromboembolism
Anemia
280
Clinical Case Study 2
H.S. is a 78-year-old female with a 10-year history of osteoarthritis. Comes for routine checkup
today, stating, “Feeling pain in right knee now, and pain pills not working.”
Subjective
H.S. reports increased pain and stiffness in her neck, lower back, and right knee for the past month.
Denies radiation of pain. Denies tingling or numbness in upper or lower extremities.
Having difficulty getting in and out of bathtub and dressing herself. Describes pain as aching,
with good and bad days. Becomes frustrated when asked to rate her pain intensity. Replies, “I don't
know what number to give; it hurts a lot, on and off.” Takes acetaminophen, extra strength, two
tablets, when the pain “really gets the best of me,” with some degree of relief. Does not take part in
“field trips” offered by assisted-living facility because she “hurts too much.” Does not use cane or
walker. No physical therapy.
Objective
Localized tenderness noted on palpation to C3 and C4; unable to flex neck to chest. Crepitus noted
in bilateral shoulder joints. No swelling noted. Muscle strength 1+ and equal for upper extremities.
Lumbar area tender to moderate palpation. Rubs lower back frequently; limited flexion at the waist.
Right knee swollen with circumference 2 cm > left knee but no redness or warmth. Left knee not
enlarged, and normal ROM. Gait slow and unsteady. Facial expression stoic.
Assessment
Chronic pain that is now increased in intensity
Decreased ROM in neck, shoulders, back, R knee
Clinical Case Study 3
T.H. is a 7-year-old boy who has just experienced a laparoscopic appendectomy. On entering the
room you see that he is awake, but his eyes are closed and he is lying flat on the bed without
movement.
Subjective
When asked if he is in pain, T.H. states “a little”; however, he rates pain as a +8 using a Faces Pain
Scale.
Objective
Requires assistance to move in the bed. Speaks only when spoken to.
Vital signs: Temp 98.6° F (37° C) (oral). BP: 122/72 mm Hg (supine). Pulse 126 bpm (while
quiet but awake). Resp 22/min.
General appearance: Diaphoretic, flushed, grimaces with slight touch.
Cardiovascular: Tachycardic at rest; no abnormal heart sounds.
Respiratory: Tachypneic at rest; pulse ox 98% on room air; breath sounds clear in all fields, no
adventitious sounds.
Abdomen: Hypoactive bowel sounds, tenderness localized to abdomen, dressing dry and
intact at surgical site.
Assessment
Acute postoperative pain
281
Acute Pain Clinical Case Study 4
J.Y. is a 53-year-old male who fell approximately 10 feet from a ladder. Landed in a “funny” sitting
position and is now experiencing severe back pain. Imaging studies in ED show herniated lumbar
disk.
Subjective
J.Y. reports pain rated at 10/10. Pain is sharp, constant, and shoots down left leg. Reports bilateral
leg weakness.
Objective
J.Y. required assistance to sit on exam table. Clenches jaw with position changes. Supports lower
back with hands. Significant tenderness of lumbar spine. Unable to perform hip flexion/extension or
spinal ROM because of pain.
Assessment
Herniated lumbar disk
Acute pain
282
Abnormal Findings
TABLE 11.3
Summary of Pain Types
Types of Pain Etiology Pain Descriptors AssociatedDisorders Treatment Options
Nociceptive
(somatic or
visceral)
Activity of nociceptors in cutaneous and deep
musculoskeletal tissue in response to tissue-damaging
stimuli
Inflammation
Somatic:
Dull
Aching
Well-localized
Nocturnal
Visceral:
Deep, squeezing
pressure
Local tenderness
and referred
Poorly localized
Somatic:
Postoperative pain
Bone metastases
Arthritis
Sports injury
Mechanical back
pain
Visceral:
Liver metastases
Pancreatic cancer
Treat the underlying
cause
Nonsteroidal anti-
inflammatory drug
(NSAID)
Opioid
Muscle relaxant
Corticosteroid
Bisphosphonate
Neuropathic Primary lesion (neuroma) or dysfunction in nervous
system causing ectopic charges within the nervous
system
Constant dull
ache
Burning
Stabbing
Viselike
Electric shock–like
Numbness
Tingling
Allodynia
Hyperalgesia
Hyperpathia
Distal
polyneuropathy
(diabetes, HIV)
Central poststroke
pain
Herpes zoster
Trigeminal
neuralgia
Neuropathic back
pain
Complex regional
pain syndrome
Tricyclic antidepressant
(TCA)
Anticonvulsant
Antidepressant
Antineuroleptic
Local anesthetic
Bisphosphonate
Corticosteroid
Opioid
Interventional
techniques
Cancer pain Infiltration of lesion
Nerve injury from periphery or central nervous system
Dependent on
underlying
pathology
Bone metastases
neuropathy
Symptom control—any
of the above
Data from Miller-Saultz, D. (2008). Identifying chronic pain: Awareness important. Nurse Pract, 33(9), 7.
TABLE 11.4
Peripheral Neuropathy
Peripheral neuropathy (PN) is symmetric damage to peripheral nerves (feet or hands), resulting in pain without stimulation of the nerves.
This is a common neuropathic pain characterized by numbness and tingling, with interspersed shooting or lancinating pain that is not
attributed to a specific nociceptive source. Diabetic neuropathy is a common complication of diabetes and may relate to demyelination of
the larger peripheral nerves, with an increase in smaller myelinated nerves. Other etiologies may include ischemic damage to nerves or
hyperglycemia, causing changes in nerve microenvironment.2 Patients experience burning pain in feet bilaterally, which is often worse at
night.
Chemotherapy-induced PN (CIPN) occurs during or after chemotherapy treatment for cancer. The risk increases with the number of agents
used in the course of treatment, higher cumulative doses of neurotoxic agents, preexisting neuropathy from diabetes or other causes, and
older age. A symptom is numbness or burning, shooting pain in a glove-and-stocking distribution.3 NOTE: With any cancer survivor, you
must address new onset of pain promptly to rule out pathologic recurrence of the cancer.
TABLE 11.5
Reflexive Sympathetic Dystrophy
283
Complex Regional Pain Syndrome (CRPS) or Reflexive
Sympathetic Dystrophy (RSD)
A key feature is that a typically innocuous stimulus (e.g., a light brush of a
cotton ball or clothing) can create a severe, intense painful response. Other
subjective data include burning pain often disproportionate to the degree of
injury and joint pain during movement. Objective data include swelling,
disappearance of skin wrinkles, cool skin temperature, discoloration, brittle
nails, and finally atrophic changes (pale, dry, shiny skin and muscle atrophy).
Treatment includes high doses of drugs (e.g., prednisone, amitriptyline,
pregabalin, clonidine) to decrease symptoms and physical therapy to regain
limb function.
CRPS/RSD is a chronic progressive nerve condition characterized by
burning pain, swelling, stiffness, and discoloration of the affected
extremity. It affects both men and women, usually around 40 to 60
years old, and occurs weeks to months after a nerve injury (e.g.,
carpal tunnel syndrome, broken leg, cerebral lesions).
Pathophysiology involves a complex interaction of sensory, motor,
and autonomic nerves and the immune system. The nerve injury may
modify the usual pain pathway, causing a neuropathic “wind-up” or
“short-circuit” mechanism.
Image © Pat Thomas, 2010.
284
References
1. American Pain Society (APS). Principles of analgesic use. 7th ed. American Pain
Society: Chicago; 2016.
2. Banasik JL, Copstead LE. Pathophysiology. 6th ed. Elsevier: St. Louis; 2019.
3. Brewer JR, Morrison G, Dolan ME, et al. Chemotherapy-induced peripheral
neuropathy: Current status and progress. Gynecol Oncol. 2015;140(1):176–183.
4. Burch RC, Loder S, Loder E, et al. The prevalence and burden of migraine and
severe headache in the United States: Updated statistics from government health
surveillance studies. Headache. 2015;55:21–34.
5. Centers for Disease Control and Prevention. Understanding the epidemic.
https://www.cdc.gov/drugoverdose/epidemic/index.html; 2017.
5a. Cleeland CS, Ryan KM. Pain assessment: Global use of the Brief Pain Inventory.
Ann Acad Med Singapore. 1994;23(2):129–138.
6. Curtiss CP. I’m worried about people in pain. Am J Nurs. 2016;116(1):11.
7. D’Arcy Y. Treating acute pain in the hospitalized patient. Nurse Pract.
2012;37(8):23–30.
8. Davis C, Green T, Beletsky L. Action, not rhetoric, needed to reverse the opioid
overdose epidemic. J Law Med Ethics. 2017;45(S1):20–23.
9. DeVon HA, Piano MR, Hoppensteadt DA. The association of pain with protein
inflammatory biomarkers: A review of the literature. Nurs Res. 2014;63(1):51–62.
10. Gagliese L, Gauthier LR, Narain H, et al. Pain, aging and dementia: Towards a
biopsychosocial model. Prog Neuropsychopharmacol Biol Psychiatry. 2017;87:207–
215.
11. Glod SA. The other victims of the opioid epidemic. N Engl J Med. 2017;376:2101–
2102.
12. International Association for the Study of Pain (IASP). Faces Pain Scale-Revised.
https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1519; 2018.
13. International Association for the Study of Pain. Neuropathic pain.
https://www.iasp-pain.org/Advocacy/GYAP.aspx?ItemNumber=5054; 2018.
14. Krechel SW, Bildner J. CRIES: A new neonatal postoperative pain measurement
score—initial testing of validity and reliability. Paediatr Anaesth. 1995;5(1):53–61.
15. Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev
Neurosci. 2017;18:20–30.
16. Legato MJ. Principles of gender-specific medicine: Gender in the genomic era. 3rd ed.
Elsevier: St. Louis; 2017.
17. McCaffery M, Pasero C. Pain: Clinical manual. 2nd ed. Mosby: St. Louis; 1999.
18. Melzack R. The short-form McGill Pain Questionnaire. Pain. 1987;30:191–197.
19. Merkel SI, Voepel-Lewis T, Shayevitz JR, et al. The FLACC: A behavioral scale for
scoring postoperative pain in young children. Pediatr Nurs. 1997;23:293–297.
20. Morton DL, Sandhu JS, Jones AKP. Brain imaging of pain: State of the art. J Pain
Res. 2016;9:613–624.
21. NIH National Institute on Drug Abuse. Opioid overdose crisis.
https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis; 2018.
21a. Poquet N, Lin C. The Brief Pain Inventory (BPI). J Physiother. 2010;62:52.
22. Robinson-Lane SG, Booker SQ. Culturally responsive pain management for Black
older Americans. J Gerontol Nurs. 2017;43(8):33–41.
23. Rosenjack Burchum J, Rosenthal LD. Lehne’s pharmacology for nursing care. 9th ed.
Elsevier: St. Louis; 2016.
24. Sekulic S, Gebauer-Bukurov K, Cvijanovic M, et al. Appearance of fetal pain could
be associated with maturation of the mesodiencephalic structures. J Pain Res.
285
https://www.cdc.gov/drugoverdose/epidemic/index.html
https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1519
https://www.iasp-pain.org/Advocacy/GYAP.aspx?ItemNumber=5054
https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis
2016;9:1031–1038.
25. Stein KD, Alcaraz KI, Kamson C, et al. Sociodemographic inequalities in barriers
to cancer pain management: A report from the American Cancer Society’s Study
of Cancer Survivors- II (SCS-II). Psychooncology. 2016;2016:1212–1221.
26. U.S. Department of Health and Human Services. About the U.S. opioid epidemic.
https://www.hhs.gov/opioids/about-the-epidemic/index.html; 2018.
27. Voepel-Lewis T, Zanotti J, Dammeyer JA, et al. Reliability and validity of the face,
legs, activity, cry, consolability behavioral tool in assessing acute pain in critically
ill patients. Am J Crit Care Nurses. 2010;19(1):55–61.
28. Volkow ND, McLellan AT. Opioid abuse in chronic pain—misconceptions and
mitigation strategies. N Engl J Med. 2016;374:1253–1263.
29. Warden V, Hurley AC, Volicer L. Development and psychometric evaluation of
the Pain Assessment in Advanced Dementia (PAINAD) scale. J Am Med Dir
Assoc. 2003;4(1):9–15.
286
https://www.hhs.gov/opioids/about-the-epidemic/index.html
C H A P T E R 1 2
287
Nutrition Assessment
288
Structure and Function
Defining Nutritional Status
Nutritional status is the balance between nutrient intake and nutrient requirements. This balance is
affected by physiologic, psychosocial, developmental, cultural, and economic factors.
Optimal nutritional status is achieved when sufficient nutrients are consumed to support day-to-
day body needs and any increased metabolic demands caused by growth, pregnancy, or illness (Fig.
12.1). People having optimal nutritional status are more active, have fewer physical illnesses, and
live longer than people who are malnourished.
12.1 (© Cavan Images.)
Undernutrition occurs when nutritional reserves are depleted and/or when nutrient intake is
inadequate to meet day-to-day needs or added metabolic demands. Vulnerable groups (i.e., infants,
children, pregnant women, recent immigrants, people with low incomes, hospitalized people, and
aging adults) are at risk for impaired growth and development, lowered resistance to infection and
disease, delayed wound healing, longer hospital stays, and higher health care costs.
Overnutrition is caused by the consumption of nutrients, especially calories, sodium, and fat, in
excess of body needs. A major nutritional problem today, overnutrition can lead to obesity and is a
risk factor for many diseases, including heart disease, type 2 diabetes, osteoarthritis, sleep apnea,
chronic kidney disease, gallstones, and gastroesophageal reflux.9,14
Obesity
An estimated one-third of children and adolescents (ages 2 to 19 years) in the United States are
overweight or obese, with nearly one-sixth (17%) being obese. Approximately two-thirds of adults
in the United States are either overweight or obese, and more than one-third are obese.14 For
children the term “overweight” applies to a body mass index (BMI) at or above the 85th percentile
based on age- and gender-specific BMI charts, and obesity is defined as a BMI equal to or greater
than the 95th percentile.4,14 Adults may be classified as overweight when they have a BMI of 25 or
greater, and as obese when their BMI is 30 or greater.14 Being overweight during childhood and
adolescence is associated with an increased risk of chronic health problems (e.g., asthma, bone and
joint problems, heart disease), an increased risk of being bullied, and an increased likelihood of
depression and social isolation. Being overweight during childhood is also associated with an
increased risk of being overweight or obese as an adult.4
Obesity is caused by multiple factors, including genetic predisposition, dietary intake, physical
inactivity, and an obesogenic environment. An obesogenic environment is one that encourages large
portions of high-fat, energy-dense food and fails to encourage healthy behaviors such as physical
activity.10 Consider the number of television ads geared toward fast, supersized food that is
convenient or the amount of time children and adolescents spend watching television or playing
289
video games. It is important that health care providers advocate for positive environmental changes
that will support maintenance of a healthy weight, such as removing soda and candy machines
from schools, advocating for the placement of grocery stores in food deserts, and assuring safe
spaces where people can exercise and children can play outside.
Developmental Competence
Infants and Children
The time from birth to 4 months of age is the most rapid period of growth in the life cycle. Although
infants lose weight during the first few days of life, they usually regain birth weight within 7 to 10
days after birth. Thereafter infants double their birth weight by 4 months and triple it by 1 year of
age.
Breastfeeding is recommended for full-term infants for the first year of life because breast milk is
ideally formulated to promote normal infant growth and development and natural immunity
through IgA antibodies. Other advantages of breastfeeding are (1) fewer food allergies and
intolerances, (2) reduced likelihood of overfeeding, (3) less cost than commercial infant formulas,
and (4) increased mother-infant interaction time. Because cow’s milk may cause gastrointestinal (GI)
and kidney problems and is a poor source of iron and vitamins C and E, it is not recommended for
infants until 1 year of age.
Infants increase their length by 50% during the first year of life and double it by 4 years of age.
Brain size also increases very rapidly during infancy and childhood. By 2 years of age the brain has
reached 50% of its adult size; by age 4, 75%; and by age 8, 100%. For this reason infants and children
younger than 2 years should not drink skim or low-fat milk or be placed on low-fat diets; fat
(calories and essential fatty acids) is required for proper growth and central nervous system
development.
Adolescence
After a period of slow growth in late childhood, adolescence presents rapid physical growth and
endocrine and hormonal changes. Caloric and protein requirements increase to meet this demand,
and because of bone growth and increasing muscle mass (and in girls the onset of menarche),
calcium and iron requirements also increase. Typically these increased requirements cannot be met
by three meals per day; therefore nutritious snacks play an important role. Consider the following
factors when working with adolescents to select healthier food choices: skipped meals, excessive
fast food and sweetened beverage consumption, limited fruit and vegetable intake, peer pressure,
alternative dietary patterns, eating disorders, hectic schedules, and possible experimentation with
drugs and alcohol. Sugar-sweetened beverages interact with the genes that affect weight and
increase a person’s risk of obesity. The risk is especially high in people who are genetically
predisposed to obesity.2,16
In general, boys grow taller and have less body fat than girls. The percentage of body fat
increases in females to about 25% and decreases in males (replaced by muscle mass) to about 12%.
Typically girls double their body weight between the ages of 8 and 14 years; boys double their body
weight between the ages of 10 and 17 years.
Childhood is the most active period in the life span, with levels of physical activity decreasing in
following decades; however, recent evidence from the Youth Risk Behavior Survey indicates that
not all adolescents are physically active. In fact, 15% reported not engaging in 60 minutes of
physical activity on any day during the past week, and 52% reported not attending physical
education classes. Perhaps more alarming is that 33% reported watching 3 or more hours of
television per day and nearly 42% reported playing computer or video games more than 3 hours
per day.3 Inactivity contributes to the development of overweight and obesity and the associated
negative health outcomes.
Pregnancy and Lactation
To support the synthesis of maternal and fetal tissues, sufficient calories, protein, vitamins, and
minerals must be consumed during pregnancy. In particular, iron, folate, and zinc are essential for
fetal growth, and vitamin and mineral supplements are often required. The National Academy of
Sciences (NAS) recommends a weight gain of 25 to 35 lb during pregnancy for women of normal
290
weight, 28 to 40 lb for underweight women, 15 to 25 lb for overweight women, and 11 to 20 lb for
obese women.13
Adulthood
During adulthood, growth and nutrient needs stabilize (Fig. 12.2). Most adults are in relatively
good health. However, lifestyle factors such as cigarette smoking; stress; lack of exercise; excessive
alcohol intake; and diets high in saturated fat, cholesterol, salt, and sugar and low in fiber can be
factors in the development of hypertension, obesity, atherosclerosis, cancer, osteoporosis, and
diabetes mellitus. Therefore the adult years are an important time for education to preserve health
and prevent or delay the onset of chronic disease.
12.2 (Agricultural Research Service, 2012.)
Lifestyle factors contribute to obesity, which is one risk factor in the development of metabolic
syndrome. This syndrome carries increased cardiac risk and is diagnosed when a person has 3 of
the following 5 biomarkers: elevated BP, increased fasting plasma glucose, elevated triglycerides,
increased waist circumference, and low high-density lipoprotein (HDL) cholesterol (see exact
parameters in Table 12.5 on p. 194).
The Aging Adult
Older adults have an increased risk for undernutrition or overnutrition. The nutritional status of
older adults may be impacted by cognitive, social, economic, and psychological factors. Older
adults are also at higher risk for medication-nutrient interactions. Physical changes also lead to
nutritional issues in older adults.11
Normal physiologic changes in aging adults that directly affect nutritional status include poor
dentition, decreased visual acuity, decreased saliva production, slowed GI motility, decreased GI
absorption, and diminished olfactory and taste sensitivity. Important nutritional features of the
older years are a decrease in energy requirements caused by loss of lean body mass (the most
metabolically active tissue) and an increase in fat mass. Because protein, vitamin, and mineral needs
remain the same or increase (e.g., vitamin D and calcium), nutrient-dense food choices (e.g., milk,
eggs, cheese, and peanut butter) are important to offset lower energy/calorie needs.
Socioeconomic conditions frequently affect the nutritional status of the aging adult. The decline of
extended families and the increase in the mobility of families reduce available support systems.
Facilities for meal preparation and eating, transportation to grocery stores, physical limitations,
reduced income, and social isolation are frequent problems that interfere with acquiring a balanced
diet. Medications must also be considered because aging adults frequently take multiple
medications that have a potential for interaction with nutrients and with one another.
The age-related loss of muscle mass is termed sarcopenia. Sarcopenic obesity is characterized by
low muscle mass with excess fat and can be attributed to a poor diet and low levels of physical
activity.19 Sarcopenic obesity results in a loss of muscle strength and function, decreased quality of
life, physical frailty, and increased mortality rates. Aerobic exercise plays its part for cardiac fitness,
but resistance training is needed to treat weakened muscles. A resistance training program with free
291
weights, machines, or elastic bands two to three times per week is recommended. Obviously
financial resources and access to safe exercise gyms are factors in meeting this need.
Culture and Genetics
Because foods and eating customs are culturally distinct, each person has a unique cultural heritage
that may affect nutritional status. Immigrants commonly maintain traditional eating customs
(especially for holidays and religious observances) long after the language and manner of dress of
an adopted country become routine (Fig. 12.3). Occupation, socioeconomic level, religion, gender,
and health awareness also have an impact on eating customs.
12.3 (© Niels Busch.)
Newly arriving immigrants may be at nutritional risk because they frequently come from
countries with limited food supplies resulting from poverty, poor sanitation, war, or political strife.
General undernutrition, hypertension, diarrhea, lactose intolerance, osteomalacia (soft bones),
scurvy, and dental caries are among the more common nutrition-related problems of new
immigrants from developing countries.
When immigrants arrive in the United States, other factors such as unfamiliar foods, food storage,
food preparation, and food-buying habits contribute to their nutritional problems. Foods from the
native country are difficult to obtain, and low income limits the access to familiar foods. When
traditional food habits are disrupted by a new culture, borderline deficiencies or adverse nutritional
consequences may result.
The cultural factors to consider are the cultural definition of food, frequency and number of
meals eaten away from home, form and content of ceremonial meals, amount and types of foods
eaten, and regularity of food consumption. The 24-hour dietary recalls or 3-day food records used
traditionally for assessment may be inadequate when dealing with people from culturally diverse
backgrounds. Standard dietary handbooks may not provide culture-specific diet information
because nutritional content and exchange tables are generally based on Western diets. Another
source of error may be cultural patterns of eating. For example, some ethnic groups eat sparingly or
moderately during the week (i.e., simple rice or bean dishes), whereas weekend meals are markedly
more elaborate (i.e., meats, fruits, vegetables, and sweets are added). Make sure that you
adequately assess the nutritional status of all individuals. During the cultural assessment (see
Chapter 3), ask about nutrition, including forbidden foods, fasting rituals, and foods typically
avoided or consumed. Asking questions about dietary practices can help you identify any potential
nutritional issues.
Dietary Practices of Selected Cultural Groups
Cultural food preferences are often interrelated with religious dietary beliefs and practices. Many
religions use foods as symbols in celebrations and rituals. Knowing the person’s religious practices
related to food enables you to suggest improvements or modifications that do not conflict with
dietary laws. Table 12.1 summarizes dietary practices for selected religious groups, but make sure
292
you ask the client about dietary practices. Do not make assumptions about diet based on the
person’s religious or ethnic background.
TABLE 12.1
Religious Dietary Practices
RELIGIOUS GROUP FOOD RESTRICTIONS
Buddhism Will vary depending on the Buddhist sect
All meat (some sects)
Alcohol
Pungent spices (garlic, onion, scallions, chives, leeks)
Catholicism Meat by some denominations on Ash Wednesday, Good Friday, and other holy days
Alcoholic beverages by some denominations
Hinduism Lacto-vegetarianism often favored
Alcohol and intoxicating substances
Garlic, onion, and spicy foods by some
Fasting on some holy days
Islam All pork and pork products
Meat not slaughtered according to ritual
Alcoholic beverages and alcohol products (e.g., vanilla extract), coffee, and tea
Food and beverages before sunset during Ramadan
The Church of Jesus Christ of Latter-Day Saints Alcoholic beverages
Hot beverages, specifically coffee and tea
Food and beverages for 2 consecutive meals on fast Sunday
Orthodox Judaism All pork and pork products
Meat not slaughtered according to ritual
All shellfish (e.g., crab, lobster, shrimp, oysters)
Dairy products and meat at the same meal
Leavened bread and cake during Passover
Food and beverages on Yom Kippur
Seventh-Day Adventist All pork and pork products
Shellfish
Meat, dairy products, and eggs by some
Alcoholic beverages, coffee, and tea
Other issues are fasting and other religious observations that may limit a person’s food or liquid
intake during specified times. For example, many Catholics fast and abstain from meat on Ash
Wednesday and the Fridays of Lent. Muslims fast from dawn to sunset during the month of
Ramadan in the Islamic calendar and eat only twice a day—before dawn and after sunset. Members
of some Jewish faiths observe a 24-hour fast on Yom Kippur.
Types of Nutritional Assessment
Nutritional assessment techniques are noninvasive, inexpensive, and easy to perform. Nutrition
screening is the first step in assessing nutritional status. Based on easily obtained data, nutrition
screening is a quick and easy way to identify individuals at nutrition risk such as those with weight
loss, inadequate food intake, or recent illness. Parameters used for nutrition screening typically
include weight and weight history, conditions associated with increased nutritional risk, diet
information, and routine laboratory data. A variety of valid tools are available for screening
different populations. For example, the Malnutrition Screening Tool5 was validated for use in adult
acute-care patients, and the Mini Nutritional Assessment (MNA®)20 was designed and validated
for use in older adults in long-term care and community settings.
Malnutrition in hospitalized patients is associated with negative patient outcomes, including
increased length of stay, increased readmission rates, and increased mortality. Nurses are often the
first health care provider to assess a newly hospitalized patient and, as such, are in an ideal position
to identify patients who are malnourished or at risk for malnutrition.18 Individuals identified to be
at nutritional risk during screening should undergo a comprehensive nutritional assessment,
which includes dietary history and clinical information, physical examination for clinical signs,
anthropometric measures, and laboratory tests. The skills needed to collect the clinical and dietary
history and to perform the physical examination are described in the Subjective and Objective Data
sections that follow. Various methods for collecting current dietary intake information are available:
24-hour recall, food frequency questionnaire, and food diary. During hospitalization,
documentation of nutritional intake is achieved through calorie counts of nutrients consumed
and/or infused.
The easiest and most popular method for obtaining information about dietary intake is the 24-
hour recall. The individual or family member completes a questionnaire or is interviewed and
293
asked to recall everything eaten within the last 24 hours. An advantage is that the 24-hour recall can
elicit specific information about dietary intake over a specific period of time. However, there are
several significant sources of error: (1) the individual or family member may not be able to recall the
type or amount of food eaten; (2) intake within the last 24 hours may be atypical of usual intake; (3)
the individual or family member may alter the truth for a variety of reasons; and (4) snack items
and the use of gravies, sauces, and condiments may be underreported. It is important to also
prompt the individual to report liquid intake as some individuals will omit drinks and simply
report food consumed.
To counter some of the difficulties inherent in the 24-hour recall method, you can use a food
frequency questionnaire. With this tool, information is collected on how many times per day,
week, or month the individual eats particular foods, providing an estimate of usual intake.
Drawbacks to the use of the food frequency questionnaire are: (1) it does not always quantify
amount of intake, and (2) like the 24-hour recall, it relies on the individual’s or family member’s
memory for how often a food is eaten.
Food diaries or records ask the individual or family member to write down everything consumed
for a certain period. Three days (i.e., two weekdays and one weekend day) are customarily used. A
food diary is most complete and accurate if you teach the individual to record information
immediately after eating. Potential problems with the food diary include (1) noncompliance, (2)
inaccurate recording, (3) atypical intake on the recording days, and (4) conscious alteration of diet
during the recording period.
Direct observation of the feeding and eating process can detect problems not readily identified
through standard nutrition interviews. For example, observing the typical feeding techniques used
by a parent or caregiver and the interaction between the individual and caregiver can help when
assessing failure to thrive in children or unintentional weight loss in older adults. Increasingly,
mobile devices and applications are being used to assess and monitor intake, including taking
photos of meals and tracking weight changes and dietary adherence. Unfortunately, the
applications lack evidence-based features and do not undergo rigorous scientific testing.
Collaborative efforts among application developers, scientists, and end users are needed to enhance
the usefulness of applications and assure quality.17
ChooseMyPlate, Dietary Guidelines, and the Dietary Reference Intakes (DRIs) are three guides
commonly used to determine an adequate diet. Please access the websites ChooseMyPlate.gov and
Dietaryguidelines.gov for additional information. The DRIs are recommended amounts of nutrients
to prevent deficiencies and reduce the risk for chronic diseases. In addition to recommending
adequate intakes, they also specify upper limits of nutrients to avoid toxicity. With an increase in
the use of dietary supplements, the risk for nutrient toxicities is on the rise. Examples of specific
DRIs and interactive tools can be found at fnic.nal.usda.gov/dietary-guidance/dietary-reference-
intakes.
294
http://ChooseMyPlate.gov
http://Dietaryguidelines.gov
http://fnic.nal.usda.gov/dietary-guidance/dietary-reference-intakes
Subjective Data
1. Eating patterns
2. Usual weight
3. Changes in appetite, taste, smell, chewing, swallowing
4. Recent surgery, trauma, burns, infection
5. Chronic illnesses
6. Nausea, vomiting, diarrhea, constipation
7. Food allergies or intolerances
8. Medications and/or nutritional supplements
9. Patient-centered care
10. Alcohol or illegal drug use
11. Exercise and activity patterns
12. Family history
Examiner Asks/Rationale
1. Eating patterns
• Number of meals/snacks per day?
• Type and amount of food eaten?
• Fad, special, or alternative diets?
• Where is food eaten?
• Food preferences and dislikes?
Most individuals know about or are interested in the foods they consume. If
misconceptions are present, begin gradual instruction to build self-care of healthy
eating patterns.
• Religious or cultural restrictions?
• Able to feed self?
Many alternative diets are not supported by scientific safety or efficacy data.
2. Usual weight
• What is your usual weight?
• 20% below or above desirable weight?
• Recent weight change? How much lost or
gained? Over what time period?
• Reason for loss or gain?
People with a recent weight loss or who are obese are at risk. Underweight
individuals are vulnerable because their fuel reserves are depleted. Excess weight
carries the risk of hypertension, diabetes, heart disease, and cancer.
3. Changes in appetite, taste, smell, chewing,
swallowing
• Type of change?
• When did change occur?
These changes interfere with adequate nutrient intake.
4. Recent surgery, trauma, burns, infection
• When? Type? How treated?
• Conditions that increase nutrient loss (e.g.,
draining wounds, effusions, blood loss, dialysis)?
These conditions have caloric and nutrient needs that are 2 or 3 times greater
than normal.
5. Chronic illnesses
• Type? When diagnosed? How treated?
• Dietary modifications?
• Recent chemotherapy or radiation therapy?
Cancer treatment or chronic illnesses that affect nutrient use (e.g., diabetes
mellitus, pancreatitis, or malabsorption) carry twice the risk for nutritional
deficits.
6. Nausea, vomiting, diarrhea, constipation
• Any problems? Caused by? How long?
GI symptoms interfere with nutrient intake or absorption.
7. Food allergies or intolerances
• Any problematic foods? Type of reaction? How
long?
Food allergies, especially peanut allergies, are on the rise and are a major
health concern.
Intolerances such as gluten and lactose may cause nutrient deficiencies.
8. Medications and/or nutritional supplements
• Prescription medications?
• Nonprescription?
• Use over a 24-hour period?
Analgesics, antacids, anticonvulsants, antibiotics, diuretics, laxatives,
antineoplastic drugs, steroids, and oral contraceptives are drugs that interact
with nutrients, impairing their digestion, absorption, metabolism, or use.
• Type of vitamin/mineral supplement? Amount?
Duration of use?
Vitamin/mineral supplements have harmful side effects if taken in large
amounts. An estimated 23,000 emergency room visits each year are the result of
dietary supplements. The majority are due to cardiovascular effects of weight
loss and energy supplements in younger adults and swallowing problems among
older adults.7
• Herbal and botanical products? Functional foods or
foods enhanced with nutrients? Specific type/brand
and where obtained? How often used? Who
recommended? How does it help you? Any
problems?
Use of herbal/botanical supplements is often not reported; therefore ask and
discuss proper use and potential adverse effects. Refer to www.nccam.nih.gov.
9. Patient-centered care
• Meal-preparation facilities?
• Transportation to grocery store?
• Adequate income for food purchase?
• Who prepares meals and does shopping?
• Environment during mealtimes?
Poverty and lack of access to nutritious groceries interfere with ingestion of
adequate amounts of food or usual diet.
10. Alcohol or illegal drug use Alcoholic beverages contain “empty calories” devoid of nutrients. Alcohol and
295
http://www.nccam.nih.gov
• Amount taken that episode?
• Amount of alcohol each day? Each week?
• Duration of use?
• Repeat questions for each drug used.
alcohol, or use illegal drugs give birth to infants with low birth weights, failure to
thrive, and other serious complications.
11. Exercise and activity patterns
• Amount?
• Type?
Caloric and nutrient needs increase with competitive sports and manual labor.
Inactive or sedentary lifestyles lead to excess weight gain.
12. Family history
• Heart disease, osteoporosis, cancer, gout, GI
disorders, obesity, or diabetes?
• Effect of each on eating patterns?
• Effect on activity patterns?
Long-term nutritional deficiencies or excesses may first appear as diseases such
as these. Early identification permits dietary and activity modifications when the
body can recover.
Additional History for Infants and Children
Dietary histories of infants and children are obtained
from the parents, caregiver, or daycare center. Usually
the person responsible for food preparation provides a
fairly accurate dietary history. Having the caregivers
keep a thorough daily food diary and occasionally
requesting 24-hour recalls during clinic visits are the
usual techniques.
1. Gestational nutrition
• Maternal history of alcohol or illegal drug use?
• Any diet-related complications during gestation?
• Infant’s birth weight?
• Any evidence of delayed physical or mental
growth?
Low birth weight (<2500 g) is a major factor in infant morbidity and
mortality.
Poor gestational nutrition, low maternal weight gain, and maternal alcohol
and drug use—all factors in low birth weight—can lead to birth defects and
delayed growth and development.
2. Infant breastfed or bottle-fed
• Type, frequency, amount, and duration of
feeding?
• Any difficulties encountered?
• Timing and method of weaning?
Well-nourished infants have appropriate physical and social growth and
development. Inexperienced mothers may have problems with feeding or
questions about whether the infant is receiving adequate food.
3. Child's willingness to eat what you prepare
• Any special likes or dislikes?
• How much will child eat?
• How do you control non-nutritious snack foods?
• How do you avoid food aspiration?
Lifelong food habits form during childhood. The use of small portions, finger
foods, simple meals, and nutritious snacks improve dietary intake. Avoid foods
likely to be aspirated (e.g., hot dogs, nuts, grapes, round candies, popcorn).
4. Overweight and obesity risk factors
• Overweight or obese parent?
• Low-income family?
• Maternal smoking during pregnancy?
• Large-for-gestational-age birth weight?
• Rapid weight gain from birth to 5 months?
Risk factors for overweight and obesity may be present during gestation, at birth,
or during infancy. Overweight and obesity during childhood often lead to
obesity during the adult years.8
Additional History for the Adolescent
1. Your present weight
• What would you like to weigh?
• How do you feel about your present weight?
• On any special diet to lose weight?
• On other diets to lose weight? If so, were they
successful?
• Constantly think about “feeling fat?” Constantly
exercising?
• Intentionally vomit or use laxatives or diuretics
after eating?
Obesity, particularly in girls, may precipitate fad dieting and malnutrition.
Adolescents' increased body awareness and self-consciousness may cause eating
disorders (anorexia nervosa or bulimia) when the real or perceived body image
does not compare favorably to an ideal image in advertisements or among peers.
2. Use of anabolic steroids or other agents to increase
muscle size and physical performance
• When?
• How much?
• Any problems?
Once confined to male professional athletes, the use of performance-enhancing
agents now extends to junior high, high school, and college. Adverse effects
include personality disorders (aggressiveness) and liver and other organ damage.
• Use of caffeinated, energy-boosting drinks? When?
Type? Duration?
Energy-boosting drinks such as Red Bull contain large amounts of caffeine,
stimulants, and/or herbal products. Side effects include dehydration, elevated BP
and heart rate, and sleep problems.
3. Overweight and obesity risk factors
• Are large amounts of food eaten in a short period
of time or for hours on end?
• Which meals do you skip? How often? Which
snacks, fast foods, and sweetened beverages do
you like? How often do you eat/drink them?
Binge eating is now the most common eating disorder across all age-groups.
Consuming fast foods and sweetened beverages is associated with increased
weight gain.6,12
4. Age first started menstruating
• What is your menstrual flow like?
Malnutrition delays menarche. Likewise, amenorrhea or scant menstrual flow
occurs with nutritional deficiency.
Additional History for the Pregnant Woman
1. Number of pregnancies
• How many times have you been pregnant?
• When?
• Any problems encountered during previous
pregnancies?
• Problems this pregnancy?
• Do you take prenatal vitamins or supplements?
A multiparous mother with pregnancies less than 1 year apart has risk for
depleted nutritional reserves. Note previous complications of pregnancy
(excessive vomiting, anemia, or gestational diabetes). Slower GI motility and
pressure from the fetus may cause constipation, hemorrhoids, and indigestion. A
history of a low-birth-weight infant suggests past nutritional problems. Giving
birth to an infant weighing 4.5 kg (10 lb) or more may signal latent diabetes in the
mother.
2. Food preferences when pregnant
• What foods do you avoid?
• Crave any particular foods?
The expectant mother is vulnerable to familial, cultural, and traditional
influences for food choices. Cravings for or aversions to particular foods are
common; evaluate their contribution to, or interference with, dietary intake.
• How much fish do you eat each week? Large amounts of fish consumption may be associated with maternal, fetal, and
296
newborn mercury toxicity.
Additional History for the Aging Adult
1. Any diet differences from when you were in your 40s
and 50s?
• Why?
• Which factors affect the way you eat?
Note any physiologic or psychological changes of aging or socioeconomic
changes that affect nutritional status.
• Adequate vitamin D and calcium intake? Vitamin D and calcium can help prevent osteoporosis.
297
Objective Data
Clinical Signs
The general appearance (i.e., obese, cachectic [fat and muscle wasting], or edematous) can provide
clues to overall nutritional status. More specific clinical signs of nutritional deficiencies can be
detected through a physical examination. Because clinical signs are late manifestations of
malnutrition, only in areas of rapid turnover of epithelial tissue (i.e., skin, hair, mouth, lips, and
eyes) are the deficiencies readily detectable. These signs may also be non-nutritional in origin.
Therefore laboratory testing is required to make an accurate diagnosis. Clinical signs of various
nutritional deficiencies are summarized in Table 12.2 and depicted in the section on abnormalities
at the end of this chapter (see Tables 12.3 and 12.4).
TABLE 12.2
Clinical Signs of Malnutrition
Area of
Examination Normal Appearance
Signs Associated With
Malnutrition Nutrient Deficiency
Skin Smooth, no signs of rashes, bruises, flaking Dry, flaking, scaly Vitamin A, vitamin B–
complex, linoleic acid
Petechiae/ecchymoses Vitamins C and K
Follicular hyperkeratosis (dry,
bumpy skin)
Vitamin A, linoleic acid
Cracks in skin; lesions on hands,
legs, face, or neck
Niacin, tryptophan
Eczema Linoleic acid
Xanthomas (excessive deposits of
cholesterol)
Excessive serum levels of
LDLs or VLDLs
Hair Shiny, firm, does not fall out easily; healthy scalp Dull, dry, sparse Protein, zinc, linoleic acid
Color changes Copper or protein
Corkscrew hair Copper
Eyes Corneas are clear, shiny; membranes are pink and moist;
no sores at corners of eyelids
Foamy plaques (Bitot spots) Vitamin A
Dryness (xerophthalmia) Vitamin A
Softening (keratomalacia) Vitamin A
Pale conjunctivae Iron, vitamins B6, B12
Red conjunctivae Riboflavin
Blepharitis Vitamin B–complex, biotin
Lips Smooth, not chapped or swollen Cheilosis (vertical cracks in lips) Riboflavin, niacin
Angular stomatitis (red cracks at
sides of mouth)
Riboflavin, niacin, iron,
vitamin B6
Tongue Red in appearance, not swollen or smooth, no lesions Glossitis (beefy red) Vitamin B–complex
Pale Iron
Papillary atrophy Niacin
Papillary hypertrophy Multiple nutrients
Magenta or purplish-colored Riboflavin
Gums Reddish-pink, firm, no swelling or bleeding Bleeding Vitamin C
Nails Smooth, pink Brittle, ridged, or spoon-shaped
(koilonychia)
Iron
Splinter hemorrhages Vitamin C
Musculoskeletal Erect posture, no malformations, good muscle tone, can
walk or run without pain
Pain in calves, thighs Thiamine
Osteomalacia Vitamin D, calcium
Rickets Vitamin D, calcium
Joint pain Vitamin C
Muscle wasting Protein, carbohydrate, fat
Neurologic Normal reflexes, appropriate affect Peripheral neuropathy Thiamine, vitamin B6
Hyporeflexia Thiamine
Disorientation or irritability Vitamin B12
LDL, Low-density lipoprotein; VLDL, very low–density lipoprotein.
Equipment Needed
Ross insertion tape or other measurement tape
Anthropometer
Pen or pencil
Nutritional assessment data form
298
Normal Range of Findings/Abnormal Findings
Anthropometric Measures
Derived Weight Measures
The percent usual body weight is calculated as follows: A current weight of 85% to 95% of usual body
weight indicates mild malnutrition; 75% to 84%,
moderate malnutrition; and <75%, severe
malnutrition.
Recent weight change is calculated using the following formula: An unintentional loss of >5% of body weight over 1
month, >7.5% of body weight over 3 months, or
>10% of body weight over 6 months is clinically
significant.
Body Mass Index
BMI is a practical marker of optimal weight for height and an indicator of obesity
or undernutrition (see p. 128 in Chapter 9). It is calculated by:
BMI interpretation for adults:
<18.5 Underweight
18.5-24.9 Normal weight
25-29.9 Overweight
30-39.9 Obesity
≥40 Extreme obesity
BMI interpretation for children ages 2 to 20
years:
<5th percentile Underweight
5th-85th percentile Healthy weight
85th-95th percentile Overweight
≥95th percentile Obese
Waist-to-Hip Ratio
The waist-to-hip ratio assesses body fat distribution as an indicator of health risk.
Obese people with a greater proportion of fat in the upper body, especially in the
abdomen, have android obesity; obese people with most of their fat in the hips
and thighs have gynoid obesity. The equation is:
where waist circumference is measured in inches just above the iliac crests of the
hips, and hip circumference is measured in inches at the largest circumference of
the buttocks. In addition, waist circumference (WC) alone can be used to predict
greater health risk (Fig. 12.4).
A waist-to-hip ratio of 1.0 or greater in men or
0.8 or greater in women indicates android
(upper body) obesity and increasing risk for
obesity-related diseases and early mortality.
A WC >35 inches in women and >40 inches in
men increases risk for heart disease, type 2
diabetes, and metabolic syndrome.
Although not routinely done, triceps skinfold (TSF)
measurement estimates the body fat stores or the
extent of undernutrition. A TSF value 10% below the
standard suggests malnutrition. See
www.massgeneral.org/crc/assets/Forms/skinfold/pdf
for procedure.
Arm Span or Total Arm Length
Measurement of arm span is useful for situations in which height is difficult to
measure, such as in children with cerebral palsy or scoliosis or in aging patients with
spinal curvature. Arm span, which is nearly equivalent to height, is sometimes used
clinically instead of height. Measure the distance from the sternal notch to the tip of
the middle finger and multiply the number by 2.15
Height measures may not be accurate in individuals
confined to a bed or wheelchair or in those older
than 60 years (because of osteoporotic changes).
Therefore arm span, which is correlated with height,
may be a better measure.
Serial Assessment
To monitor nutritional status in malnourished individuals or individuals at risk for
malnutrition, serial measurements are made at routine intervals. At a minimum,
weight and dietary intake should be evaluated weekly. Because the other nutritional
assessment parameters change more slowly, data on these indicators may be collected
biweekly or monthly.
Based on the findings of the nutritional assessment,
the type of malnutrition can be diagnosed. The four
major types of malnutrition are obesity, marasmus,
kwashiorkor, and marasmus-kwashiorkor mix (see
Table 12.3). Each type of malnutrition has
characteristic clinical and laboratory findings and a
distinct cause.
Approaches to weight loss for overweight and obesity must be tailored to the
individual, be culturally sensitive, and consider the patient’s readiness to lose weight
and his or her health care and self-care beliefs. Weight-loss programs that provide
fewer than 1000 to 1200 calories per day may not provide adequate nutrients.
Regardless of macronutrient composition, any diet that reduces caloric intake or
contains 1400 to 1500 calories per day results in weight loss. In other words, it is not
eating too much of any particular nutrient such as carbohydrate or fat that makes us
299
http://www.massgeneral.org/crc/assets/Forms/skinfold/pdf
gain weight, but rather the overall number of calories ingested. The cardinal features
of a successful long-term weight loss plan are (1) getting regular physical exercise
(i.e., 4 to 5 times/week for 30 minutes); (2) eating a low-calorie (≈1400 to 1500
kcal/day), low-fat (20% to 25% of total calories) diet; and (3) monitoring daily food
intake (e.g., food diary, portion size) and weight.
12.4
300
Documentation and Critical Thinking
Sample Charting
Subjective
A.J. is a 70- year-old retired teacher with no history of diseases or surgery that would alter
intake/requirements; no recent weight changes; no appetite changes. Socioeconomic history is
noncontributory. Does not smoke; drink alcohol; or use illegal, prescription, or over-the-counter
drugs. No food allergies. Sedentary lifestyle; plays golf twice per week using riding cart. Reports
losing 40 lb during past 6 months through monitored commercial weight-loss program.
Objective
Dietary intake is adequate to meet protein and energy needs. No clinical signs of nutrient
deficiencies. Height 70 in, weight 209 lb, BMI 30, and screening laboratory tests within normal
ranges.
Assessment
Obesity, improving through monitored program
Sedentary lifestyle
Case Study 1
K.L. is a 44-year-old female who has been overweight most of her life. Recently diagnosed with
hypertension and type 2 diabetes. Comes to the clinic today for a nutritional assessment.
Subjective
K.L. reports a lifelong struggle with obesity. Multiple failed diet attempts. Daily calorie intake
approximately 3000 calories/day. Typical day: pastry or doughnut with coffee for breakfast, fast-
food meal with soft drink for lunch, and “whatever I can find” for dinner. Lives in a low-income
neighborhood. Nearest grocery store with fresh produce approximately 25 minutes by car. Few safe
places in neighborhood for outdoor exercise.
Objective
Inspection: General appearance is obese for age and height.
Anthropometric: Height 157.5 cm (62 in). Weight 120 kg (265 lb). BMI 48.5 (obese).
Laboratory: Hemoglobin, hematocrit, and albumin within normal limits. Hemoglobin A1c
12%. Fasting glucose 213 mg/dL.
Assessment
Morbid obesity; uncontrolled type 2 diabetes
Case Study 2
S.A. is a 14-year-old girl who has been overweight most of her life. She now has a weight gain of 12
pounds since starting high school 6 months PTA. She lives in a low-income neighborhood where
the nearest grocery store with fresh fruits and vegetables is a bus ride away. There are no parks or
well-lit areas with sidewalks near her home.
301
Subjective
Based on S.A.’s diet recall, estimated daily calorie intake averages 2500 to 3000 calories/day. States,
“I either skip breakfast or eat a doughnut on the way to school. At lunch, I eat what they give me
that I don’t have to pay for.” Dinner is usually items from a fast-food restaurant such as a double
cheeseburger, fries, and soft drink. Enjoys snacking on toaster pastries, instant ramen noodles,
potato chips, and macaroni and cheese at home and consumes fruit punch and sweet tea
throughout the day.
Objective
Vital signs: Temp 98.6° F (37° C) (oral); BP 118/68 mm Hg (sitting); Pulse 82 bpm (resting);
Resp 18/min.
Anthropometric: Height 162.6 cm (64 in). Weight 68.6 kg (151 lb). BMI 26.
General appearance: Appears overweight for age and height; moderate amount of open and
closed comedones and acne lesions generalized to face, neck, and back.
Assessment
Overweight with BMI of 26
302
Abnormal Findings
TABLE 12.3
Classification of Malnutrition
Type/Etiology Clinical Features AnthropometricMeasures
Laboratory
Findings
Obesity caused by caloric excess refers to weight more
than 20% above ideal body weight or body mass index
(BMI) of 30.0-39.9. The causes are complex and
multifaceted—genetic, social, cultural, pathologic,
psychological, and physiologic factors. In most cases a
small caloric surplus over a long period results in the
extra pounds. Although visceral protein levels are
normal in the obese individual, anthropometric
measures are above normal.
Obese appearance Weight >120%
standard for
height
BMI >30
Triceps skinfold
(TSF) >10%
above
standard
Waist-to-hip
ratio >1 (men)
or >0.8
(women)
BMI ≥40 is
morbid or
extreme
obesity (see
Table 9.1, p.
129)
Serum
cholesterol
>200 mg/dL
Serum
triglycerides
>250 mg/dL
Marasmus (protein-calorie malnutrition) is caused by
inadequate intake of protein and calories or prolonged
starvation. Anorexia, bowel obstruction, cancer
cachexia, and chronic illness are among the clinical
conditions leading to marasmus. It is characterized by
decreased anthropometric measures (i.e., weight loss
and subcutaneous fat and muscle wasting). Visceral
protein levels may remain within normal ranges.
Starved appearance Weight ≤80%
standard for
height
TSF <90%
standard
Mid–upper arm
muscle
circumference
(MAMC) ≤90%
standard
Kwashiorkor (protein malnutrition) is caused by diets
high in calories but little or no protein (e.g., low-
protein liquid diets, fad diets, and long-term use of
dextrose-containing intravenous fluids). In contrast to
individuals with marasmus, those with kwashiorkor
have decreased visceral protein levels but adequate
anthropometric measures. Therefore they may appear
well nourished or even obese.
Well-nourished appearance
Edematous
Weight ≥100%
standard for
height
TSF ≥100%
standard
Serum
albumin
<3.5 g/dL
Serum
transferrin
<150 mg/dL
303
Marasmus/kwashiorkor mix is caused by prolonged
inadequate intake of protein and calories such as
severe starvation and severe catabolic states.
Nutritional assessment findings include muscle, fat,
and visceral protein wasting. Individuals have usually
undergone acute catabolic stress such as major surgery,
trauma, or burns in combination with prolonged
starvation or have AIDS wasting. Without nutritional
support, this type of malnutrition is associated with the
highest risk for morbidity and mortality.
Emaciated appearance Weight ≤70%
standard
TSF ≤80%
standard
MAMC ≤60%
standard
Serum
albumin
<2.8 g/dL
Serum
transferrin
<100 mg/dL
See Illustration Credits for source information.
TABLE 12.4
Abnormalities Caused by Nutritional Deficiencies
Scorbutic Gums
Deficiency of vitamin C. Gums are swollen, ulcerated, and bleeding because of vitamin
C–induced defects in oral epithelial basement membrane and periodontal collagen fiber
synthesis.
Rickets
Sign of vitamin D and calcium deficiencies in children
(disorders of cartilage cell growth, enlargement of
epiphyseal growth plates) and adults (osteomalacia).
Bitot Spots
Foamy plaques of the cornea are the accumulations of
keratin that are a sign of vitamin A deficiency. Severe
depletion may result in conjunctival xerosis (drying)
and progress to corneal ulceration and finally
destruction of the eye (keratomalacia).
304
Follicular Hyperkeratosis
Dry, bumpy skin associated with vitamin A and/or
linoleic acid (essential fatty acid) deficiency.
Linoleic acid deficiency may also result in
eczematous skin, especially in infants.
Pellagra
Pigmented keratotic scaling lesions resulting from a deficiency of niacin. These lesions are
especially prominent in areas exposed to the sun such as hands, forearms, neck, and legs.
Magenta Tongue
A sign of riboflavin deficiency. In contrast, a pale
tongue is probably attributable to iron deficiency; a
beefy red–colored tongue is caused by vitamin B–
complex deficiency.
305
Abnormal Findings for Advanced Practice
TABLE 12.5
Metabolic Syndrome (MetS)
Having 3 of these 5 biomarkers signifies MetS. MetS is associated with increased risk for cardiovascular disease, type 2 diabetes mellitus, and
mortality. Its prevalence is estimated to be nearly 35% of adults and 50% of people 60 years of age and older.1
TABLE 12.6
Nutritional Consequences of Bariatric Surgerya,b
Potential Nutritional Consequences Related Dietary Changes
Malabsorption of protein and calories caused by decreased absorptive surface and
availability of digestive enzymes
Eating small, nutrient-dense meals
Malabsorption of vitamins and minerals caused by achlorhydria or loss of site of absorption Taking vitamin and mineral supplements
Weight regain Avoiding excessive intake of calorically dense
liquids/foods
Obstruction of bypassed sections or pouch Avoiding chunks of food that could cause
blockage
aVertical and adjustable gastric banding, Roux-en-Y gastric bypass.
bPeople who are 100% or more above ideal body weight or have a body mass index (BMI) ≥40 are categorized as morbidly or
extremely obese and are possible candidates for bariatric or weight-loss surgery, as are people with BMIs ≥35 and comorbid
conditions.
306
Summary Checklist: Nutritional Assessment
1. Obtain a health history relevant to nutritional status.
2. Elicit dietary history if indicated.
3. Inspect skin, hair, eyes, oral cavity, nails, and musculoskeletal and neurologic systems for
clinical signs and symptoms suggestive of nutritional deficiencies.
4. Measure height, weight, BMI, WC, and other anthropometric parameters as indicated.
5. Review relevant laboratory tests.
6. Offer health promotion teaching.
307
References
1. Aguilar M, Bhuket T, Torres S, et al. Prevalence of metabolic syndrome in the
United States, 2003-2012. JAMA. 2015;313:1973–1974.
2. Brunkwall L, Chen Y, Hindy G, et al. Sugar-sweetened beverage consumption
and genetic predisposition to obesity in 2 Swedish cohorts. Am J Clin Nutr.
2016;104:809–815.
3. Centers for Disease Control and Prevention. Nutrition, physical activity, & obesity
data & statistics. https://www.cdc.gov/healthyyouth/data/topics/npao.htm; 2016.
4. Centers for Disease Control and Prevention. Childhood obesity facts.
https://www.cdc.gov/healthyschools/obesity/facts.htm; 2018.
5. Ferguson M, Capra S, Bauer J, et al. Development of a valid and reliable
malnutrition screening tool for adult acute care hospital patients. Nutrition.
1999;15:458–464.
6. Frantsve-Hawley J, Bader JD, Welsh JA, et al. A systematic review of the
association between consumption of sugar-containing beverages and excess
weight gain among children under age 12. J Public Health Dent. 2017;77:S43–S66.
7. Geller AI, Shehab N, Weidle NJ, et al. Emergency department visits for adverse
events related to dietary supplements. N Engl J Med. 2015;373:1531–1540.
8. Gittner LS. Obesity prevention in children from birth to age 5. Prim Prev Insights.
2014;4:1–9.
9. Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of
obesity. N Engl J Med. 2017;376:254–266.
10. Lipek T, Igel U, Gausche R, et al. Obesogenic environments: Environmental
approaches to obesity prevention. J Pediatr Endocrinol Metab. 2015;28:485–495.
11. Mangels SR. Malnutrition in older adults: An evidence-based review of risk
factors, assessment, and interventions. Am J Nurs. 2018;118(3):34–42.
12. Millar L, Rowland B, Nichols M, et al. Relationship between raised BMI and sugar
sweetened beverage and high fat food consumption among children. Obesity
(Silver Spring). 2014;22(5):E96–E103.
13. National Academy of Sciences, Committee to Reexamine IOM Pregnancy Weight
Guidelines, Institute of Medicine, National Research Council, Rasmussen KM,
Yaktine AL. Weight gain during pregnancy: Reexamining the guidelines. National
Academies Press: Washington, DC; 2009.
14. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).
Overweight & Obesity Statistics. https://www.niddk.nih.gov/health-
information/health-statistics/overweight-obesity; 2017.
15. Nestle Nutrition Institute. Nutrition Screening as Easy as MNA. https://www.mna-
elderly.com/forms/mna_guide_english_sf .
16. Qi Q, Chu AY, Kang JH, et al. Sugar-sweetened beverages and genetic risk of
obesity. N Engl J Med. 2012;367:1387–1396.
17. Rivera J, McPherson A, Hamilton J, et al. Mobile apps for weight management: A
scoping review. JMIR mHealth and uHealth. 2016;4(3):e87.
18. Sauer AC, Alish CJ, Stausbaugh K, et al. Nurses needed: Identifying malnutrition
in hospitalized older adults. NursingPlus Open. 2016;2:21–25.
19. Shao A, Campbell WW, Chen C-Y O, et al. The emerging global phenomenon of
sarcopenic obesity: Role of functional foods; a conference report. J Funct Foods.
2017;33:244–250.
20. Vellas B, Villars H, Abellan G, et al. Overview of the MNA®: Its history and
challenges. J Nutr Health Aging. 2006;10(6):456–465.
308
https://www.cdc.gov/healthyyouth/data/topics/npao.htm
https://www.cdc.gov/healthyschools/obesity/facts.htm
https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity
https://www.mna-elderly.com/forms/mna_guide_english_sf
309
U N I T 3
Physical Examination
OUTLINE
Chapter 13 Skin, Hair, and Nails
Chapter 14 Head, Face, Neck, and Regional Lymphatics
Chapter 15 Eyes
Chapter 16 Ears
Chapter 17 Nose, Mouth, and Throat
Chapter 18 Breasts, Axillae, and Regional Lymphatics
Chapter 19 Thorax and Lungs
Chapter 20 Heart and Neck Vessels
Chapter 21 Peripheral Vascular System and Lymphatic System
Chapter 22 Abdomen
Chapter 23 Musculoskeletal System
Chapter 24 Neurologic System
Chapter 25 Male Genitourinary System
Chapter 26 Anus, Rectum, and Prostate
Chapter 27 Female Genitourinary System
310
C H A P T E R 1 3
311
Skin, Hair, and Nails
312
Structure and Function
Skin
The skin is the largest organ system in the body—it covers 20 square feet of surface area in the
average adult. The skin is the sentry that guards the body from environmental stresses (e.g.,
trauma, pathogens, dirt) and adapts it to other environmental influences (e.g., heat, cold). The skin
has two layers: the outer, highly differentiated epidermis and the inner, supportive dermis (Fig. 13.1).
Beneath these is the subcutaneous layer of adipose tissue.
13.1
Epidermis
The epidermis is thin but tough. Its cells are bound tightly together into sheets that form a rugged
protective barrier. It is stratified into several zones. The inner basal cell layer forms new skin cells.
Their major ingredient is the tough, fibrous protein keratin. The melanocytes interspersed along this
layer produce the pigment melanin, which gives brown tones to the skin and hair. People of all skin
colors have the same number of melanocytes; however, the amount of melanin they produce varies
with genetic, hormonal, and environmental influences.
From the basal layer the new cells migrate up and flatten into the outer horny cell layer. This
consists of dead keratinized cells that are interwoven and closely packed. The cells are constantly
being shed, or desquamated, and are replaced with new cells from below. The epidermis is
completely replaced every 4 weeks.
On the palms and soles skin is thicker because of work and weight bearing. The epidermis is
avascular; it is nourished by blood vessels in the dermis below.
Skin color is derived from three sources: (1) mainly from the brown pigment melanin, (2) from the
313
yellow-orange tones of the pigment carotene, and (3) from the red-purple tones in the underlying
vascular bed. All people have skin of varying shades of brown, yellow, and red; the relative
proportion of these shades affects the prevailing color. Skin color is further modified by the
thickness of the skin and the presence of edema.
Dermis
The dermis is the inner supportive layer consisting mostly of connective tissue, or collagen. This is
the tough, fibrous protein that enables the skin to resist tearing. The dermis also has resilient elastic
tissue that allows the skin to stretch with body movements. The nerves, sensory receptors, blood
vessels, and lymphatics lie in the dermis. In addition, appendages from the epidermis such as the
hair follicles, sebaceous glands, and sweat glands are embedded in the dermis.
Subcutaneous Layer
The subcutaneous layer is adipose tissue, which is lobules of fat cells. The subcutaneous tissue stores
fat for energy, provides insulation for temperature control, and aids in protection by its soft
cushioning effect. The loose subcutaneous layer also gives skin its increased mobility over
structures underneath.
Hair
Hairs are threads of keratin. The hair shaft is the visible projecting part, and the root is below the
surface embedded in the follicle. At the root the bulb matrix is the expanded area where new cells
are produced at a high rate. Hair growth is cyclical, with active and resting phases. Each follicle
functions independently; thus while some hairs are resting, others are growing. Around the hair
follicle are the muscular arrector pili, which contract and elevate the hair so it resembles “goose
flesh” when the skin is exposed to cold or in emotional states.
People have two types of hair. Fine, faint vellus hair covers most of the body (except the palms
and soles, the dorsa of the distal parts of the fingers, the umbilicus, the glans penis, and inside the
labia). The other type is terminal hair, the darker, thicker hair that grows on the scalp and eyebrows
and, after puberty, on the axillae, the pubic area, and the face and chest in the male.
Sebaceous Glands
These glands produce a protective lipid substance, sebum, which is secreted through the hair
follicles. Sebum oils and lubricates the skin and hair and forms an emulsion with water that retards
water loss from the skin. (Dry skin results from loss of water, not directly from loss of oil.)
Sebaceous glands are everywhere except on the palms and soles. They are most abundant in the
scalp, forehead, face, and chin.
Sweat Glands
There are two types of sweat glands. The eccrine glands are coiled tubules that open directly onto
the skin surface and produce a dilute saline solution called sweat. The evaporation of sweat reduces
body temperature. Eccrine glands are widely distributed through the body and are mature in the 2-
month-old infant.
The apocrine glands produce a thick, milky secretion and open into the hair follicles. They are
located mainly in the axillae, anogenital area, nipples, and navel and are vestigial in humans. They
become active during puberty, and secretion occurs with emotional and sexual stimulation.
Bacterial flora residing on the skin surface react with apocrine sweat to produce a characteristic
musky body odor. The functioning of apocrine glands decreases in the aging adult.
Nails
The nails are hard plates of keratin on the dorsal edges of the fingers and toes (Fig. 13.2). The nail
plate is clear, with fine longitudinal ridges that become prominent in aging. Nails take their pink
color from the underlying nail bed of highly vascular epithelial cells. The lunula is the white,
opaque, semilunar area at the proximal end of the nail. It lies over the nail matrix where new
keratinized cells are formed. The nail folds overlap the posterior and lateral borders. The cuticle
works like a gasket to cover and protect the nail matrix.
314
13.2
Function of the Skin
The skin is a waterproof, rugged covering that has protective and adaptive properties:
• Protection. Skin minimizes injury from physical, chemical,
thermal, and light-wave sources.
• Prevents penetration. Skin is a barrier that stops invasion of
microorganisms and loss of water and electrolytes from within the
body.
• Perception. Skin is a vast sensory surface holding the
neurosensory end-organs for touch, pain, temperature, and
pressure.
• Temperature regulation. Skin allows heat dissipation through
sweat glands and heat storage through subcutaneous insulation.
• Identification. People identify one another by unique
combinations of facial characteristics, hair, skin color, and even
fingerprints. Self-image is often enhanced or diminished by the
way society's standards of beauty measure up to each person's
perceived characteristics.
• Communication. Emotions are expressed in the sign language of
the face and body posture. Vascular mechanisms such as blushing
or blanching also signal emotional states.
• Wound repair. Skin allows cell replacement of surface wounds.
• Absorption and excretion. Skin allows limited excretion of some
metabolic wastes, by-products of cellular decomposition such as
minerals, sugars, amino acids, cholesterol, uric acid, and urea.
• Production of vitamin D. The skin is the surface on which
ultraviolet (UV) light converts cholesterol into vitamin D.
Developmental Competence
315
Infants and Children
The hair follicles develop in the fetus at 3 months' gestation; by midgestation most of the skin is
covered with lanugo, the fine downy hair of the newborn infant. In the first few months after birth,
this is replaced by fine vellus hair. If terminal hair on the scalp is present at birth, it tends to be soft
and suffer a patchy loss, especially at the temples and occiput. Also present at birth is vernix
caseosa, the thick, cheesy substance made up of sebum and shed epithelial cells.
The newborn's skin is similar in structure to the adult's, but many of its functions are not fully
developed. The newborn's skin is thin, smooth, and elastic and is relatively more permeable than
that of the adult; thus the infant is at greater risk for fluid loss. Sebum, which holds water in the
skin, is present for the first few weeks of life, producing milia (see p. 215) and cradle cap in some
babies. Then sebaceous glands decrease in size and production and do not resume functioning until
puberty. Temperature regulation is not effective. Eccrine sweat glands do not secrete in response to
heat until the first few months of life and then only minimally throughout childhood. The skin
cannot protect much against cold because it cannot contract and shiver and because the
subcutaneous layer is inefficient. In addition, the pigment system is inefficient at birth.
As the child grows, the epidermis thickens, toughens, and darkens, and the skin becomes better
lubricated. Hair growth accelerates. At puberty secretion from apocrine sweat glands increases in
response to heat and emotional stimuli, producing body odor. Sebaceous glands become more
active; the skin looks oily, and acne develops. Subcutaneous fat deposits increase, especially in
females.
Secondary sex characteristics that appear during adolescence are evident in the skin. In the
female the diameter of the areola enlarges and darkens, and breast tissue develops. Coarse pubic
hair develops in males and females, then axillary hair, and then coarse facial hair in males.
The Pregnant Woman
Metabolism is increased in pregnancy; as a way to dissipate heat, the peripheral vasculature dilates,
and the sweat and sebaceous glands increase secretion. Fat deposits are laid down, particularly in
the buttocks and hips, as maternal reserves for the nursing baby. See p. 217 for expected skin color
changes due to increased hormone levels.
The Aging Adult
The skin is a mirror that reflects aging changes that proceed in all our organ systems; it just happens
to be the one organ that we can view directly. The aging process carries a slow atrophy of skin
structures. The aging skin loses its elasticity; it folds and sags. By the 70s to 80s, it looks parchment
thin, lax, dry, and wrinkled.
The outer layer of the epidermis thins and flattens. This allows chemicals easier access into the
body. Wrinkling occurs because the underlying dermis thins and flattens. A loss of elastin, collagen,
and subcutaneous fat and reduction in muscle tone occur. The loss of collagen increases the risk for
shearing, tearing injuries.
Sweat and sebaceous glands decrease in number and function, leaving dry skin. Decreased
response of the sweat glands to thermoregulatory demand also puts the aging person at greater risk
for heat stroke. The vascularity of the skin diminishes while the vascular fragility increases; a minor
trauma may produce dark red discolored areas, or senile purpura.
Sun exposure and cigarette smoking further accentuate aging changes in the skin. Coarse
wrinkling, decreased elasticity, atrophy, speckled and uneven coloring, more pigment changes, and
a yellowed, leathery texture occur. Chronic sun damage is even more prominent in light-skinned
persons.
An accumulation of factors places the aging person at risk for skin disease and breakdown: the
thinning of the skin, the decrease in vascularity and nutrients, the loss of protective cushioning of
the subcutaneous layer, a lifetime of environmental trauma to skin, the social changes of aging (e.g.,
less nutrition, limited financial resources), the increasingly sedentary lifestyle, and the chance of
immobility. When skin breakdown does occur, subsequent cell replacement is slower, and wound
healing is delayed.
In the aging hair matrix, the number of functioning melanocytes decreases; therefore the hair
looks gray or white and feels thin and fine. A person's genetic script determines the onset of graying
and the number of gray hairs. Hair distribution changes. Males may have a symmetric W-shaped
balding in the frontal areas. Some testosterone is present in both males and females; as it decreases
316
with age, axillary and pubic hair decrease. As the female's estrogen also decreases, testosterone is
unopposed, and the female may have some bristly facial hairs. Nails grow more slowly. Their
surface is lusterless and characterized by longitudinal ridges resulting from local trauma at the nail
matrix.
Because the aging changes in the skin and hair can be viewed directly, they carry a profound
psychological impact. For many people self-esteem is linked to a youthful appearance. This view is
compounded by media advertising in Western society. Although sagging and wrinkling skin and
graying and thinning hair are normal processes of aging, they prompt a loss of self-esteem for many
adults.
Culture and Genetics
Melanin protects the skin against harmful UV rays, a genetic advantage accounting for the lower
incidence of skin cancer among darkly pigmented African Americans and American Indians.
Invasive melanoma makes up about 1% of all skin cancer cases but accounts for the vast majority of
skin cancer deaths.1 The incidence of melanoma is 21 times higher in whites than in Hispanics, and
26 times higher in whites than in blacks. Women outnumber men in melanoma cases before age 50
years, but by age 65 years men have double the rates of women and by age 80 years they are triple.1
Risk factors are high exposure to UV radiation from sunlight or indoor tanning beds, family history
of melanoma, and the presence of atypical or numerous (≥50) moles. The risk is increased for
persons who sunburn easily or who have natural blond or red hair. Advancing age is a risk because
of the accumulation of DNA damage over time.18 About 95% of skin melanoma cases are
attributable to UV radiation exposure.10
Almost 300 genes are responsible for increased chromosomal sensitivity to sun damage. There is
a succession of genetic mutation during the progression from benign through intermediate lesions
to melanoma, with ultraviolet radiation a factor throughout.14 This occurs from sunlight and from
indoor tanning beds. Users of indoor tanning beds are overwhelmingly teenage girls and young
women. Anyone who has ever used a tanning bed has a 23% increased risk of developing
melanoma, and this risk increases for anyone who has used a tanning bed over 10 times in a lifetime
or for users under age 25 years.4 Four states in the United States have passed legislation restricting
children from using tanning salons (Texas 16.5 years, New York 17 years, Vermont 18 years,
California 18 years). However, evidence shows low compliance to the laws restricting access to
tanning beds by teens because of lack of enforcement by regulatory agencies.8 In addition, primary
care pediatricians have low rates of counseling teens against tanning beds. Evidence shows that
about one-third of pediatricians discussed indoor tanning at least once with their patients ages 10 to
13; about half discussed this with older teens.2 Nurses and nurse practitioners should share the
risks of tanning bed use with their patients.
Several skin conditions are common among blacks: Keloids are scars that form at the site of a
wound and grow beyond the normal boundaries of the wound (see p. 229). African Americans have
very compact collagen bundles just below the epidermis that form the keloid. Areas of
postinflammatory hypopigmentation or hyperpigmentation appear as dark or light spots after
acne has resolved. Pseudofolliculitis, also known as “razor bumps” or “ingrown hairs,” is caused
by shaving too closely with an electric or straight razor. Melasma, or the “mask of pregnancy,” is a
patchy tan-to–dark brown discoloration of the face.
317
Subjective Data
1. Past history of skin disease (allergies, hives, psoriasis, eczema)
2. Change in pigmentation
3. Change in mole (size or color)
4. Excessive dryness or moisture
5. Pruritus
6. Excessive bruising
7. Rash or lesion
8. Medications
9. Hair loss
10. Change in nails
11. Environmental or occupational hazards
12. Patient-centered care
Examiner Asks/Rationale
1. Past history of skin disease. Any past skin
disease or problem?
• How was this treated?
• Any family history of allergies or allergic
skin problem?
Significant familial predisposition: allergies, hay fever, psoriasis, atopic dermatitis
(eczema), acne.
• Any known allergies to drugs, plants, animals? Identify offending allergen.
• Any birthmarks, tattoos? Although professional tattooing now uses aseptic conditions, non–TB mycobacterial
infections still occur, as well as inflammatory and hypersensitivity reactions. Skin
cancers occur, but it is unclear whether these are coincidental or due to potential
carcinogenic tattoo inks.15
2. Change in pigmentation. Any change in skin
color or pigmentation?
Hypopigmentation (loss of color); hyperpigmentation (increase in color).
• A generalized color change (all over) or
localized?
Generalized change suggests systemic illness: pallor, jaundice, cyanosis.
3. Change in mole. Any change in a mole: color,
size, shape, sudden appearance of tenderness,
bleeding, itching?
• Any “sores” that do not heal?
Signs suggest neoplasm in pigmented nevus. May be unaware of change in nevus on
back or buttocks that he or she cannot see.
4. Excessive dryness or moisture. Any change in
the feel of your skin: temperature, moisture,
texture?
Seborrhea—Oily.
• Any excess dryness? Is it seasonal or constant? Xerosis—Dry.
5. Pruritus. Any skin itching? Is it mild (prickling,
tingling) or intense (intolerable)?
• Does it awaken you from sleep?
Pruritus is the most common skin symptom; occurs with dry skin, aging, drug
reactions, allergy, obstructive jaundice, uremia, lice.
• Where is the itching? When did it start? Presence or absence of pruritus helps diagnosis. Scratching causes excoriation of
primary lesion.
• Any other skin pain or soreness? Where?
6. Excessive bruising. Any excess bruising?
Where on the body?
• How did this happen?
• How long have you had it?
Multiple cuts and bruises, bruises in various stages of healing, bruises above knees and
elbows, and illogical explanation—consider physical abuse. Frequent falls may be
caused by dizziness of neurologic or cardiovascular origin. Frequent minor trauma may
be a side effect of alcoholism or other drug abuse.
7. Rash or lesion. Any skin rash or lesion?
• Onset. When did you first notice it?
Rashes are a common cause of seeking health care. A careful history is important; it may
predict the type of lesion you will see in the examination and its cause.
• Location. Where did it start? Identify the primary site; it may give clue to cause.
• Where did it spread?
• Character or quality. Describe the color.
• Is it raised or flat? Any crust, odor? Does it feel
tender, warm?
• Duration. How long have you had it?
Migration pattern, evolution.
• Setting. Anyone at home or work with a similar
rash? Have you been camping, acquired a new
pet, tried a new food, drug? Does the rash seem
to come with stress?
Identify new or relevant exposure, any household or social contacts with similar
symptoms.
• Alleviating and aggravating factors. What home
remedies have you tried? Bath, lotions, heat? Do
they help or make it worse?
• Associated symptoms. Any itching, fever?
Myriad over-the-counter remedies are available. People try them and seek professional
help only when they do not work.
• What do you think rash/lesion means? Assess person's perception of cause: fear of cancer, tickborne illnesses, or sexually
transmitted infections.
• Coping strategies. How has rash/lesion affected
your self-care, hygiene, ability to function at
work/home/socially?
Assess effectiveness of coping strategies. Chronic skin diseases may increase risk for
loss of self-esteem, social isolation, and anxiety.
318
• Any new or increased stress in your life? Stress can exacerbate chronic skin illness.
8. Medications. Which medications do you take?
• Prescription and over-the-counter?
• Recent change?
Drugs, especially antibiotics, may cause allergic skin eruption. Drugs may increase
sunlight sensitivity and give burn response: sulfonamides, thiazide diuretics, oral
hypoglycemic agents, tetracycline. Drugs can cause hyperpigmentation: antimalarials,
anticancer agents, hormones, metals, and tetracycline.
• How long on medication? Even after a long time on medication, a person may develop sensitivity.
9. Hair loss. Any recent hair loss?
• A gradual or sudden onset? Symmetric?
Associated with fever, illness, increased
stress?
Alopecia is a significant loss. A full head of hair equates with vitality in many cultures.
If treated as a trivial problem, the person may seek alternative, unproven methods of
treatment.
• Any unusual hair growth?
• Any recent change in texture, appearance?
Hirsutism is shaggy or excessive hair.
10. Change in nails. Any change in nails: shape,
color, brittleness? Do you tend to bite or chew
nails?
11. Environmental or occupational hazards. Any
environmental or occupational hazards?
Majority of skin cancers result from environmental or occupational agents.
• With your occupation such as dyes, toxic
chemicals, radiation?
• How about hobbies? Do you perform any
household or furniture repair work?
People at risk: outdoor sports enthusiasts, farmers, sailors, outdoor workers; also
creosote workers, roofers, coal workers.
• How much sun exposure do you get from
outdoor work, leisure activities, sunbathing,
tanning salons?
Unprotected sun exposure accelerates aging and produces lesions. At more risk: light-
skinned people, light eye and hair color, freckles, and those regularly in sun.
• Recently been bitten by insect: bee, tick,
mosquito?
Identify contactants that produce lesions or contact dermatitis.
• Any recent exposure to plants, animals in yard
work, camping?
Tell people with chronic recurrent urticaria (hives) to keep diary of meals and
environment to identify triggers.
12. Patient-centered care. What do you do to care
for your skin, hair, nails? Which cosmetics,
soaps, chemicals do you use?
• Clip cuticles on nails, use adhesive for
false fingernails?
Assess self-care and influence on self-concept—may be important with the media
emphasis in this society on high norms of beauty. Many over-the-counter remedies are
costly and exacerbate skin problems.
• If you have allergies, how do you control your
environment to minimize exposure?
• Do you perform a skin self-examination? See Patient Teaching, p. 220.
Additional History for Infants and Children
1. Does the child have any birthmarks?
2. Was there any change in skin color as a
newborn?
• Any jaundice? Which day after birth? Physiologic jaundice, see p. 215.
• Any cyanosis? What were the circumstances?
3. Have you noted any rash or sores? What seems
to bring it on?
• Have you introduced a new food or
formula? When? Does your child eat
chocolate, cow's milk, eggs?
Generalized rash—consider allergic reaction to new food.
Irritability and general fussiness may indicate the presence of pruritus.
4. Does the child have any diaper rash? How do
you care for this? How do you wash diapers?
How often do you change diapers? How do you
clean skin?
Occlusive diapers or infrequent changing may cause rash. Infant may be allergic to
certain detergent or disposable wipes.
5. Does the child have any burns or bruises?
Where?
How did it happen?
A careful history can distinguish expected childhood bumps and bruises from any
lesion that indicates child abuse or neglect: cigarette burns; excessive bruising,
especially above knees or elbows; linear whip marks. With abuse the history often does
not coincide with the physical appearance and location of lesion.
6. Has the child had any exposure to contagious
skin conditions: scabies, impetigo, lice? Or to
communicable diseases: measles, chickenpox,
scarlet fever? Or to toxic plants: poison ivy?
• Are the child's vaccinations up-to-date?
7. Does the child have any habits or habitual
movements such as nail-biting, twisting hair,
rubbing head on mattress?
8. Which steps are taken to protect the child from
sun exposure? What about sunscreens and
sunblocks? How do you treat sunburn?
Excessive sun, including severe or blistering sunburns in childhood, increases risk for
melanoma in later life.1
Additional History for the Adolescent
1. Have you noticed any skin problems such as
pimples, blackheads?
• How long have you had them?
• How do you treat them?
• How do you feel about it?
Over 85% of teenagers have acne; the psychological effect is significant, with poor self-
esteem, scarring, depression. Multifactorial causes include increased sebum production,
microbes, inflammation.19
Additional History for the Aging Adult
1. Which changes have you noticed in your skin in
the past few years?
Assess impact of aging on self-concept. Normal aging changes may cause distress.
Many “aging” changes, including skin cancers, are the result of chronic sun damage.
2. Any delay in wound healing?
• Any skin itching?
Pruritus with aging occurs with side effects of medicine or systemic disease (e.g., liver
or kidney disease, cancer, lymphoma), but senile pruritus is usually caused by dry skin
(xerosis), too-frequent bathing, or use of soap. Scratching with dirty, jagged fingernails
produces excoriations.
3. Any other skin pain? Some diseases such as herpes zoster (shingles) produce more intense sensations of pain,
319
itching in aging people. Other diseases (e.g., diabetes) may reduce pain sensation in
extremities. In addition, some aging people tolerate chronic pain as “part of growing
old” and hesitate to “complain.”
4. Any change in feet, toenails? Any bunions? Is it
possible to wear shoes?
Some aging people cannot reach down to their feet to give self-care.
5. Have you had any falls this year? How many? Multiple bruises, trauma from falls.
6. Any history of diabetes, peripheral vascular
disease?
Risk for skin lesions in feet or ankles.
7. What do you do to care for your skin? A bland lotion is important to retain moisture in aging skin. Dermatitis may ensue
from certain cosmetics, creams, ointments, and dyes applied to achieve a youthful
appearance.
Aging skin has a delayed inflammatory response to irritants. If not alerted by
warning signs (e.g., pruritus, redness), continued exposure may cause dermatitis.
320
Objective Data
Preparation
Try to control external variables that change skin color and confuse your findings (Table 13.1).
TABLE 13.1
External Variables Influencing Skin Color
VARIABLE CAUSES MISLEADING OUTCOME
Emotions
Fear, anger → Peripheral vasoconstriction → False pallor
Embarrassment → Flushing in face and neck → False erythema
Environment
Hot room → Vasodilation → False erythema
Chilly or air-conditioned room → Vasoconstriction → False pallor, coolness
Cigarette smoking → Vasoconstriction → False pallor
Physical
Prolonged elevation → Decreased arterial perfusion → Pallor, coolness
Dependent position → Venous pooling → Redness, warmth, distended veins
Immobilization, prolonged inactivity → Slowed circulation → Pallor, coolness, pale nail beds, prolonged capillary filling time
Learn to consciously attend to skin characteristics. You grow so accustomed to seeing the skin that
you are likely to ignore it as you assess the organ systems underneath. Yet the skin holds
information about body circulation, nutritional status, signs of systemic diseases, and topical data
on the integument itself.
Know the person's normal skin coloring. Baseline knowledge is important to assess color or pigment
changes. If this is the first time you are examining the person, ask about his or her usual skin color
and any self-monitoring practices.
The Complete Physical Examination.
Although it is presented alone in this chapter, skin assessment is integrated throughout the
complete examination; it is not a separate step. At the beginning of the examination, assessing the
person's hands and fingernails is a nonthreatening way to accustom him or her to your touch. As
you move through the examination, scrutinize the outer skin surface first before you concentrate on
the underlying structures. Separate intertriginous areas (areas with skinfolds) such as under large
breasts, obese abdomen, and the groin and inspect them thoroughly. These areas are dark, warm,
and moist and provide the perfect conditions for irritation or infection. Finally always remove the
person's socks and inspect the feet, the toenails, and the folds between the toes.
The Regional Examination.
Help the person remove clothing and assess the skin as one entity. Stand back at first to get an
overall impression; this helps reveal distribution patterns. Then inspect lesions carefully. With a
skin rash, check all areas of the body because the person cannot see some locations. Inspect mucous
membranes, too, because some disorders have characteristic lesions here.
Equipment Needed
Strong direct lighting (natural daylight is ideal to evaluate skin characteristics, but halogen
light will suffice)
Small centimeter ruler
Penlight
Gloves
Needed for special procedures:
Wood's light (filtered UV light)
Lighted magnifier
321
Normal Range of Findings/Abnormal Findings
Inspect and Palpate the Skin
Color
General Pigmentation.
Observe the skin tone. Normally it is even and consistent with genetic background. It varies from pinkish tan to ruddy dark tan or from light to
dark brown and may have yellow or olive overtones. Dark-skinned people normally have areas of lighter pigmentation on the palms, nail beds,
and lips (Fig. 13.3, A).
13.3 A, Even skin tone.
General pigmentation is darker in sun-exposed areas. Common (benign) pigmented areas also occur:
• Freckles (ephelides)—Small, flat macules of brown melanin pigment that occur on sun-exposed skin (Fig. 13.4, A).
• Mole (nevus)—A clump of melanocytes, tan-to-brown color, flat or raised. Acquired nevi have symmetry, small size (6 mm or less), smooth
borders, and single uniform pigmentation. The junctional nevus (Fig. 13.4, B) is macular only and occurs in children and adolescents. In young
adults it progresses to the compound nevus (Fig. 13.4, C), which is macular and papular. The intradermal nevus (mainly in older age) has nevus
cells in only the dermis.
• Birthmarks—May be tan to brown in color.
13.4 A, Freckles. B, Junctional nevus. C, Compound nevus. (Hurwitz, 1993.)
Widespread Color Change.
Note any color change over the entire body. Normally there is no change. In dark-skinned people the amount of normal pigment may mask color
changes. Lips and nail beds vary with the person's skin color and may not be accurate signs. The more reliable sites have the least pigmentation
such as under the tongue, the buccal mucosa, the palpebral conjunctiva, and the sclera. See Table 13.2 for specific clues to assessment.
Pallor.
When the red-pink tones from the oxygenated hemoglobin in the blood are lost, the skin takes on the color of connective tissue (collagen), which
is mostly white. Pallor is common in acute high-stress states such as anxiety or fear because of the powerful peripheral vasoconstriction from
sympathetic nervous system stimulation. The skin also looks pale with vasoconstriction from exposure to cold and from cigarette smoking and
in the presence of edema.
Look for pallor in dark-skinned people by the absence of the luster of the underlying red tones. The brown-skinned individual shows yellowish-
brown color, and the black-skinned person appears ashen or gray. Observe generalized pallor in the mucous membranes, lips, and nail beds. Look
for the pallor of anemia in the palpebral conjunctiva and nail beds. Inspect the conjunctiva near the outer and inner canthi. The coloration is often
322
lighter near the inner canthus.
Erythema.
Intense redness of the skin is from excess blood (hyperemia) in the dilated superficial capillaries. This sign is expected with fever, local
inflammation, or emotional reactions such as blushing in vascular flush areas (cheeks, neck, and upper chest).
The erythema with fever or localized inflammation has an increased skin temperature from the increased rate of blood flow. Because you cannot
see inflammation in dark-skinned people, you must palpate the skin for increased warmth or taut or tightly pulled surfaces that may indicate
edema and hardening of deep tissues or blood vessels.
Cyanosis.
This is a bluish mottled color from decreased perfusion (Fig. 13.5); the tissues have high levels of deoxygenated blood. This is best seen in the
lips, nose, cheeks, ears, and oral mucous membranes and in artificial fluorescent light. Do not confuse cyanosis with the common and normal
bluish tone on the lips of dark-skinned persons of Mediterranean origin.
13.5 Cyanosis, especially in fingertips. (Patton, 2012.)
Be aware that cyanosis can be a nonspecific sign. A person who is anemic could have hypoxemia without ever looking blue, because not enough
hemoglobin is present (either oxygenated or reduced) to color the skin. On the other hand, a person with polycythemia (an increase in the
number of red blood cells) looks ruddy blue at all times and may not necessarily be hypoxemic. This person just cannot fully oxygenate the
massive numbers of red blood cells.
Cyanosis is difficult to observe in darkly pigmented people (see Table 13.2). Given that most conditions causing cyanosis also cause decreased
oxygenation of the brain, other clinical signs such as changes in level of consciousness and signs of respiratory distress are evident.
Jaundice.
A yellowish skin color indicates rising amounts of bilirubin in the blood. Except for physiologic jaundice in the newborn (p. 215), jaundice does
not occur normally. It is first noted in the junction of the hard and soft palate in the mouth and in the sclera. Then the eyes appear yellow, but do
not confuse scleral jaundice with the normal yellow subconjunctival fatty deposits that are common in the outer sclera of dark-skinned persons.
The scleral yellow of jaundice extends up to the edge of the iris.
As levels of serum bilirubin rise, jaundice is evident in the skin over the rest of the body. This is best assessed in direct natural daylight. Common
calluses on palms and soles often look yellow; do not interpret these as jaundice.
Temperature
Palpate the skin; it should be warm, and the temperature should be equal bilaterally; warmth suggests normal circulatory status (Fig. 13.6). Hands
and feet may be slightly cooler in a cool environment.
Hypothermia.
Generalized coolness may be induced such as in hypothermia used for surgery or high fever. Localized coolness is expected with an
immobilized extremity, as when a limb is in a cast or with an intravenous infusion.
Hyperthermia.
Generalized hyperthermia occurs with an increased metabolic rate such as in fever or after heavy exercise. A localized area feels hyperthermic
with trauma, infection, or sunburn.
323
13.6
Moisture
Perspiration appears normally on the face, hands, axillae, and skinfolds in response to activity, a warm environment, or anxiety. Diaphoresis,
profuse perspiration, accompanies an increased metabolic rate such as occurs in heavy activity or fever.
Look for dehydration in the oral mucous membranes. Normally there is none, and the mucous membranes look smooth and moist. Be aware that
dark skin may normally look dry and flaky but this does not necessarily indicate systemic dehydration.
Texture
Normal skin feels smooth and firm, with an even surface.
Thickness
The epidermis is uniformly thin over most of the body, although thickened callus areas are normal on palms and soles. A callus is a circumscribed
overgrowth of epidermis and is an adaptation to excessive pressure from the friction of work and weight bearing.
Edema
Edema is fluid accumulating in the interstitial spaces; it is not present normally. To check for edema, imprint your thumbs firmly for 3 to 4
seconds against the ankle malleolus or the tibia. Normally the skin surface stays smooth. If your pressure leaves a dent in the skin, “pitting”
edema is present. See Chapter 21, p. 515, for a full explanation of assessing edema.
Edema masks normal skin color and obscures pathologic conditions such as jaundice or cyanosis because the fluid lies between the surface and
the pigmented and vascular layers. It makes dark skin look lighter.
Mobility and Turgor
Pinch up a large fold of skin on the anterior chest under the clavicle (Fig. 13.7). Mobility is the ease of skin to rise, and turgor is its ability to
return to place promptly when released. This reflects the elasticity of the skin.
13.7
Vascularity or Bruising
Cherry (senile) angiomas are small (1 to 5 mm), smooth, slightly raised bright red dots that commonly appear on the trunk in all adults older
than 30 years (Fig. 13.8). They normally increase in size and number with aging and are not significant.
13.8 Cherry angioma. (Lemmi & Lemmi, 2011.)
324
Any bruising (contusion) should be consistent with the expected trauma of life. Normally there are no venous dilations or varicosities.
Document the presence of any tattoos (a permanent skin design from indelible pigment) on the person's chart. Inspect skin of tattoo for any infection
or inflammation; normally there are no reactions.
Lesions
If any lesions are present, note the:
1. Color.
2. Elevation: flat, raised, or pedunculated.
3. Pattern or shape: the grouping or distinctness of each lesion (e.g., annular, grouped, confluent, linear). The pattern may be characteristic of a
certain disease.
4. Size, in centimeters: use a ruler to measure. Avoid household descriptions such as “quarter size” or “pea size.”
5. Location and distribution on body: is it generalized or localized to area of a specific irritant; around jewelry, watchband, eyes?
6. Any exudate. Note its color and any odor.
Palpate lesions. Wear a glove if you anticipate contact with blood, mucosa, or any body fluid. Roll a nodule between the thumb and index finger
to assess depth. Gently scrape a scale to see if it comes off. Note the nature of its base or whether it bleeds when the scale comes off. Note the
surrounding skin temperature. However, the erythema associated with rashes is not always accompanied by noticeable increases in skin
temperature (Fig. 13.9).
13.9
Does the lesion blanch with pressure or stretch? Stretching the area of skin between your thumb and index finger decreases (blanches) the normal
underlying red tones, thus providing more contrast and brightening the macules. Red macules from dilated blood vessels will blanch momentarily,
whereas those from extravasated blood (petechiae) do not. Blanching also helps identify a macular rash in dark-skinned people.
Use a magnifier and light for closer inspection of the lesion (Fig. 13.10). Use a Wood's light (i.e., a UV light filtered through a special glass) to
detect fluorescing lesions. With the room darkened, shine the Wood's light on the area.
13.10
Inspect and Palpate the Hair
Color
Hair color comes from melanin production and may vary from pale blond to total black. Graying begins as early as the 30s because of reduced
melanin production in the follicles. Genetic factors affect the onset of graying.
Texture
Scalp hair may be fine or thick and may look straight, curly, or kinky. It should look shiny, although this characteristic may be lost with the use
325
of some beauty products such as dyes, rinses, or permanents (Fig. 13.11).
13.11
Distribution
Fine vellus hair coats the body, whereas coarser terminal hairs grow at the eyebrows, eyelashes, and scalp. During puberty, distribution conforms to
normal male and female patterns. At first coarse curly hairs develop in the pubic area, then in the axillae, and last in the facial area in boys. In the
genital area the female pattern is an inverted triangle; the male pattern is an upright triangle with pubic hair extending up to the umbilicus. In Asians
body hair may be diminished.
Lesions
Separate the hair into sections and lift it, observing the scalp. With a history of itching, inspect the hair behind the ears and in the occipital area as
well. All areas should be clean and free of any lesions or pest inhabitants. Many people normally have seborrhea (dandruff), which is indicated by
loose white flakes.
Inspect and Palpate the Nails
Shape and Contour
The nail surface is normally slightly curved or flat, and the posterior and lateral nail folds are smooth and rounded. Nail edges are smooth,
rounded, and clean, suggesting adequate self-care (Fig. 13.12).
13.12
The Profile Sign.
View the index finger at its profile and note the angle of the nail base; it should be about 160 degrees (Fig. 13.13). The nail base is firm to
palpation. Curved nails are a variation of normal with a convex profile. They may look like clubbed nails, but notice that the angle between nail
base and nail is normal (i.e., 160 degrees or less).
13.13
Consistency
The surface is smooth and regular, not brittle or splitting.
326
Nail thickness is uniform.
The nail firmly adheres to the nail bed, and the nail base is firm to palpation.
Color
The translucent nail plate is a window to the even, pink nail bed underneath.
Dark-skinned people may have brown-black pigmented areas or linear bands or streaks along the nail edge (Fig. 13.14). All people normally may
have white hairline linear markings from trauma or picking at the cuticle called leukonychia (Fig. 13.15). Note any abnormal marking in the nail
beds.
13.14 Linear pigmentation. (Lemmi & Lemmi, 2011.)
13.15 Leukonychia striata. (Lemmi & Lemmi, 2011.)
Capillary Refill.
With the index or middle fingertip at heart level, depress the nail edge at least 5 seconds to blanch and then release, noting the return of color.
Normally color return is instant or at least within a few seconds in a cold environment. This indicates the status of the peripheral circulation. A
healthy color return takes 1 or 2 seconds (see Fig. 13.12).
Inspect the toenails. Separate the toes and note the smooth skin in between.
13.16
DEVELOPMENTAL COMPETENCE
Infants
Skin Color—General Pigmentation.
Black newborns initially have lighter-toned skin than their parents because of immature pigment function. Their full melanotic color is evident in
the nail beds and scrotal folds. The mongolian spot is a common variation of hyperpigmentation in African-American, Asian, American Indian,
and Latino newborns (Fig. 13.17). It is a blue-black–to-purple macular area at the sacrum or buttocks but sometimes on the abdomen, thighs,
shoulders, or arms. It is caused by deep dermal melanocytes. It gradually fades during the first year. By adulthood these spots are lighter but are
frequently still visible. Mongolian spots are present in 90% of blacks, 80% of Asians and American Indians, and 9% of whites. If you are
unfamiliar with mongolian spots, be careful not to confuse them with bruises. Recognition of this normal variation is particularly important
when dealing with children who might be erroneously identified as victims of child abuse.
327
13.17 Mongolian spot. (Lemmi & Lemmi, 2011.)
The café au lait spot is a large round or oval patch of light brown pigmentation (thus the name coffee with milk), which is usually present at birth
(Fig. 13.18). Usually these patches are normal.
13.18 Café au lait spot. (Bowden, 1998.)
Skin Color Change.
Three erythematous states are common variations in the neonate:
1. The newborn's skin has a beefy red flush for the first 24 hours because of vasomotor instability; then the color fades to its normal color.
2. The harlequin color change occurs when the baby is in a side-lying position. The lower half of the body turns red, and the upper half blanches
with a distinct demarcation line down the midline. The cause is unknown, and it is transient.
3. Finally, erythema toxicum is a common rash that appears in the first 3 to 4 days of life. Sometimes called the flea bite rash or newborn rash, it
consists of tiny punctate red macules and papules on the cheeks, trunk, chest, back, and buttocks (Fig. 13.19). The cause is unknown; no treatment
is needed.
13.19 Erythema toxicum. (Hurwitz, 1993.)
328
Two temporary cyanotic conditions may occur:
1. Acrocyanosis is a bluish color around the lips, hands and fingernails, and feet and toenails. This may last for a few hours and disappear with
warming.
2. Cutis marmorata is a transient mottling in the trunk and extremities in response to cooler room temperatures (Fig. 13.20). It forms a reticulated red
or blue pattern over the skin.
13.20 Cutis marmorata. (Hurwitz, 1993.)
Physiologic jaundice is a normal variation in about half of all newborns. A yellowing of the skin, sclera, and mucous membranes develops after the
3rd or 4th day of life because of the increased numbers of red blood cells that hemolyze after birth. The hemoglobin in the red blood cells is
metabolized by the liver and spleen; its pigment is converted into bilirubin.
Carotenemia also produces a yellow-orange color in light-skinned persons but no yellowing in the sclera or mucous membranes. It comes from
ingesting large amounts of foods containing carotene, a vitamin A precursor. Carotene-rich foods are popular as prepared infant foods, and the
absorption of carotene is enhanced by mashing, pureeing, and cooking. The color is best seen on the palms and soles, forehead, tip of the nose and
nasolabial folds, chin, behind the ears, and over the knuckles; it fades to normal color within 2 to 6 weeks of withdrawing carotene-rich foods from
the diet.
Moisture.
The vernix caseosa is the moist, white, cream cheese–like substance that covers part of the skin in all newborns. Perspiration is present after 1
month of age.
Texture.
Milia is a common variation (Fig. 13.21); you will note tiny white papules on the forehead and eyelids, also on cheeks, nose, and chin, caused by
sebum that occludes the opening of the follicles. Tell parents not to squeeze the lesions; milia resolve spontaneously within a few weeks.
13.21 Milia. (Cohen, 2013.)
Thickness.
In the neonate the epidermis is normally thin, but you will also note well-defined areas of subcutaneous fat. The baby's skin dimples over joints,
but there is no break in the skin. Check for any defect or break in the skin, especially over the length of the spine.
Mobility and Turgor.
Test mobility and turgor over the abdomen in an infant.
Vascularity or Bruising.
One common vascular birthmark is a nevus simplex (stork bite, or salmon patch); it is a flat, irregularly shaped red or pink patch found on the
forehead, eyelid, or upper lip but most commonly at the back of the neck (nuchal area) (Fig. 13.22). It is present at birth and usually fades during
the first year.
329
13.22 Nevus simplex (stork bite). (Eichenfield, 2015.)
Hair.
A newborn's skin is covered with fine downy lanugo (Fig. 13.23), especially in a preterm infant. Dark-skinned newborns have more lanugo than
lighter-skinned newborns. Scalp hair may be lost in the few weeks after birth, especially at the temples and occiput. It grows back slowly.
13.23 Lanugo. (Murray, 2010.)
Nails.
A newborn's nail beds may be blue (cyanotic) for the first few hours of life; then they turn pink.
Adolescents
The increase in sebaceous gland activity creates increased oiliness and acne. Acne is the most common skin problem of adolescence. Almost all
teens have some acne, even in the milder form of open comedones (blackheads) (Fig. 13.24, A) and closed comedones (whiteheads). Severe acne
includes papules, pustules, and nodules (Fig. 13.24, B). Acne lesions usually appear on the face and sometimes on the chest, back, and shoulders.
Acne may appear in children as early as 7 to 8 years of age; then the lesions increase in number and severity and peak at 14 to 16 years in girls
and at 16 to 19 years in boys.
330
13.24 A, Open comedones. B, Severe acne. (Habif, 2005.)
The Pregnant Woman
Striae are jagged linear “stretch marks” of silver-to-pink color that appear during the 2nd trimester on the abdomen, breasts, and sometimes thighs.
They occur in half of all pregnancies. They fade after delivery but do not disappear. The change in hormone levels causes numerous color changes.
On the abdomen is the linea nigra, a brownish-black line down the midline (see Fig. 31.5). Chloasma is an irregular brown patch of
hyperpigmentation on the face. It may occur with pregnancy or in women taking oral contraceptive pills. Chloasma disappears after delivery or
discontinuation of the pills. Vascular spiders (spider angioma) are common in pregnancy because of increased estrogen and may resolve after
childbirth. These lesions have tiny red centers with radiating branches and occur on the face, neck, upper chest, and arms.
The Aging Adult
Skin Color and Pigmentation.
Senile lentigines are common variations of hyperpigmentation. Commonly called liver spots, these are small, flat, brown macules (Fig. 13.25
These circumscribed areas are clusters of melanocytes that appear after extensive sun exposure. They appear on the forearms and dorsa of the
hands. They are not malignant and require no treatment.
13.25 Lentigines. (Marks, 2019.)
Keratoses are raised, thickened areas of pigmentation that look crusted, scaly, and warty. One type, seborrheic keratosis, looks dark, greasy,
and “stuck on” (Fig. 13.26). They develop mostly on the trunk but also on the face and hands and on both unexposed and sun-exposed areas.
They do not become cancerous.
331
13.26 Seborrheic keratosis. (Lemmi & Lemmi, 2011.)
Another type, actinic (senile or solar) keratosis, is less common (Fig. 13.27). These lesions are red-tan scaly plaques that increase over the years
to become raised and roughened. They may have a silvery-white scale adherent to the plaque. They occur on sun-exposed surfaces and are
directly related to sun exposure. They are premalignant and may develop into squamous cell carcinoma.
13.27 Actinic keratosis. (Habif, 2001.)
Moisture.
Dry skin (xerosis) is common in the aging person because of a decline in the number and output of the sweat glands and sebaceous glands. The
skin itches and looks flaky and loose.
Texture.
Acrochordons, or “skin tags,” are overgrowths of normal skin that form a stalk and are polyp-like (Fig. 13.28). They occur frequently on eyelids,
cheeks and neck, and axillae and trunk.
13.28 Skin tags. (Marks, 2019.)
Sebaceous hyperplasia consists of raised yellow papules with a central depression. They are more common in men, occurring over the forehead,
nose, or cheeks. They have a pebbly look (Fig. 13.29).
13.29 Sebaceous hyperplasia. (Callen, 1993.)
Thickness.
With aging, the skin looks as thin as parchment, and the subcutaneous fat diminishes. Thinner skin is evident over the dorsa of the hands,
forearms, lower legs, dorsa of feet, and bony prominences. The skin may feel thicker over the abdomen and chest.
Hair.
With aging the amount of hair decreases in the axillae and pubic areas. After menopause white women may develop bristly hairs on the chin or
upper lip resulting from unopposed androgens. In men coarse terminal hairs develop in the ears, nose, and eyebrows, although the beard is
332
unchanged. Male-pattern balding, or alopecia, is a genetic trait. It is usually a gradual receding of the anterior hairline in a symmetric W shape.
In men and women scalp hair gradually turns gray because of the decrease in melanocyte function.
Nails.
With aging the nail growth rate decreases, and local injuries in the nail matrix may produce longitudinal ridges. The surface may be brittle or
peeling and sometimes yellowed. Toenails also are thickened and may grow misshapen, almost grotesque. The thickening may be a process of
aging, or it may be caused by chronic peripheral vascular disease.
A healthy, capillary refill time is longer in aging adults, (1.5 to 2 seconds, with 4 seconds as the upper limit).3
Mobility and Turgor.
The skin turgor is decreased (less elasticity), and the skin recedes slowly or “tents” and stands by itself (Fig. 13.30).
13.30
333
Health Promotion and Patient Teaching
(To adolescents and adults) I want to teach you to examine your skin, using the ABCDEF rule (see p. 206)
to raise warning signals of any suspicious lesions. Use a well-lighted room that has a full-length mirror. It
helps to have a small handheld mirror. Ask a family member to search skin areas difficult to see (e.g., behind
ears, back of neck, back). Follow the sequence outlined in Fig. 13.32, and report any suspicious lesions
promptly to a physician or nurse.
13.32 Skin self-examination.
334
Documentation and Critical Thinking
Sample Charting
Subjective
No history of skin disease; no present change in pigmentation or in nevi; no pruritus, bruising, rash,
or lesions. On no medications. No work-related skin hazards. Uses SPF 30 sun-block cream when
outdoors.
Objective
Skin: Color tan-pink, even pigmentation, with no suspicious nevi. Warm to touch, dry,
smooth, and even. Turgor good, no lesions.
Hair: Even distribution, thick texture, no lesions or pest inhabitants.
Nails: No clubbing or deformities. Nail beds pink with prompt capillary refill.
Assessment
Warm, dry, intact skin.
Focused Assessment: Clinical Case Study 1a
H.H. is a 3-year-old female who arrives with her mother. H.H.'s mother brought her in because of
H.H.'s fever, fatigue, and rash of 3 days' duration.
Subjective
2 weeks PTA (prior to arrival)—H.H. was playing with a preschool classmate who “became
sick and is missing school because of some kind of rash.”
3 days PTA—Mother reports fever 101°-102.4° F (38.3°-39° C) and states, “She's just so tired
and cranky.” That evening parents note “tiny blisters” on chest and back.
1 day PTA—Blisters on chest changed to white and now are scabbed. Mom reports new
eruption of blisters on shoulders, thighs, and face that “just make her scratch so much.”
Objective
Vital signs: Temp 101° F (38.3° C). BP 100/63 mm Hg (sitting). Pulse 100 bpm. Resp 24/min.
General appearance: Appears fatigued and irritable.
Skin: Generalized vesiculopustular rash covering face, trunk, upper arms, and thighs. Small
vesicles on face; pustules and red-honey–colored crusts and scabbing located on trunk; skin
warm and otherwise dry w/good turgor.
HEENT: Tympanic membranes pearly gray w/landmarks visible and intact; no discharge;
mucosa dark pink w/o lesions; tonsils 1+ w/o exudate; no lymphadenopathy.
Cardiovascular: No murmurs or other abnormal heart sounds.
Respiratory: Hyperresonant to percussion; breath sounds clear, no adventitious sounds.
Assessment
Varicella
Acute pain and pruritus
Potential for transmission of infection to others
335
Focused Assessment: Clinical Case Study 2
B.G. is a 79-year-old retired widow, in good health until recent hospitalization after a fall.
Problem List 1 Fractured right hip—hip replacement on 11/24
Subjective
11/27, Aching pain in left hip (nonoperative side).
Objective
Erosion 2 × 2 cm with surrounding erythema covering L ischium. Erosion is moist; no active
bleeding. Area very warm and tender to touch.
Assessment
Pressure injury, L hip
Acute pain
Decreased mobility
Focused Assessment: Clinical Case Study 3
M.G. is a 62-year-old retired female in good health with no chronic illnesses. She takes a
multivitamin daily but has no prescription medications. She enters the clinic today with complaints
of itching, tingling, and severe pain on her right flank.
Subjective
Tingling, itching, and severe pain on right flank for 4 days. Pain does not radiate. Reports having a
“weird rash” that developed this morning.
Objective
Temperature 98.4° F (36.9° C). Pulse 89 bpm. Resp 18/min. BP 116/72 mm Hg.
Skin: Zosteriform rash on right flank, approximately 7 cm long. Some vesicles intact; others
eroded likely from scratching. Surrounding skin red. Left flank has intact skin with no
lesions.
Assessment
Herpes zoster, right flank
Acute pain
Potential for infection R/T broken vesicles on right flank
336
Abnormal Findings
TABLE 13.2
Detecting Color Changes in Light and Dark Skin
Etiology Light Skin Dark Skin
Pallor
Anemia—Decreased
hematocrit
Shock—Decreased perfusion,
vasoconstriction
Generalized pallor Brown skin appears yellow-brown, dull; black skin
appears ashen gray, dull; skin loses its healthy glow—
Check areas with least pigmentation such as
conjunctivae, mucous membranes
Local arterial insufficiency Marked localized pallor (e.g., lower
extremities, especially when elevated)
Ashen gray, dull; cool to palpation
Albinism—Total absence of
pigment melanin throughout the
integument
Whitish pink Tan, cream, white
Vitiligo—Patchy depigmentation
from destruction of melanocytes
Patchy milky-white spots, often symmetric
bilaterally
Same
Cyanosis
Increased amount of
unoxygenated hemoglobin
Central—Chronic heart and
lung disease cause arterial
desaturation
Dusky blue Dark but dull, lifeless; only severe cyanosis is apparent in
skin—Check conjunctivae, oral mucosa, nail beds
Peripheral—Exposure to cold,
anxiety
Nail beds dusky
Erythema
Hyperemia—Increased blood in
engorged arterioles (e.g.,
inflammation, fever, alcohol
intake, blushing)
Red, bright pink Purplish tinge but difficult to see; palpate for increased
warmth with inflammation, taut skin, and hardening of
deep tissues
Polycythemia—Increased red
blood cells, capillary stasis
Ruddy blue in face, oral mucosa, conjunctiva,
hands, and feet
Well concealed by pigment; check for redness in lips
Carbon monoxide poisoning Bright cherry red in face and upper torso Cherry-red color in nail beds, lips, and oral mucosa
Venous stasis—Decreased blood
flow from area, engorged venules
Dusky rubor of dependent extremities; a
prelude to necrosis with pressure sore
Easily masked; use palpation for warmth or edema
Jaundice
Increased serum bilirubin from
liver inflammation or hemolytic
disease such as after severe burns,
some infections
Yellow in sclera, hard palate, mucous
membranes, then over skin
Check sclera for yellow near limbus; do not mistake
normal yellowish fatty deposits in the scleral periphery
for jaundice; jaundice best noted in junction of hard and
soft palate, also palms
Carotenemia—Increased serum
carotene from ingestion of large
amounts of carotene-rich foods
Yellow-orange in forehead, palms and soles,
nasolabial folds, but no yellowing in sclera or
mucous membranes
Yellow-orange tinge in palms and soles
Uremia—Renal failure causes
retained urochrome pigments in
the blood
Orange-green or gray overlying pallor of
anemia; may also have ecchymoses and
purpura
Easily masked; rely on laboratory and clinical findings
Brown-Tan
Addison disease—Cortisol
deficiency stimulates increased
melanin production
Bronzed appearance; an “eternal tan,” most
apparent around nipples, perineum,
genitalia, and pressure points (inner thighs,
buttocks, elbow, axillae)
Easily masked; rely on laboratory and clinical findings
Café au lait spots—Caused by
increased melanin pigment in
basal cell layer
Tan to light brown, irregularly shaped, oval
patch with well-defined borders
TABLE 13.3
Common Shapes and Configurations of Lesions
337
ANNULAR, or circular, begins in center and spreads to periphery (e.g.,
tinea corporis or ringworm, tinea versicolor, pityriasis rosea).
CONFLUENT, lesions run together (e.g., urticaria [hives]).
DISCRETE, distinct, individual lesions that remain separate
(e.g., acrochordon or skin tags, acne).
GYRATE, twisted, coiled spiral, snakelike GROUPED, clusters of lesions (e.g., vesicles of contact
dermatitis).
338
LINEAR, a scratch, streak, line, or stripe. TARGET, or iris, resembles iris of eye, concentric rings of color
in lesions (e.g., erythema multiforme).
ZOSTERIFORM, linear arrangement along a unilateral nerve route (e.g.,
herpes zoster).
POLYCYCLIC, annular lesions grow together (e.g., lichen
planus, psoriasis).
TABLE 13.4
Primary Skin Lesions
The immediate result of a specific causative factor; primary lesions develop on previously unaltered skin.
Macule Papule
Solely a color change, flat and circumscribed, of less than 1 cm. Examples: freckles, flat nevi,
hypopigmentation, petechiae, measles, scarlet fever.
Something you can feel (i.e., solid, elevated,
circumscribed, less than 1 cm diameter) caused by
superficial thickening in epidermis. Examples: elevated
nevus (mole), lichen planus, molluscum, wart
(verruca).
Patch Plaque
Macules that are larger than 1 cm. Examples: mongolian spot, vitiligo, café au lait spot,
chloasma, measles rash.
Papules coalesce to form surface elevation wider than 1
cm. A plateaulike, disk-shaped lesion. Examples:
psoriasis, lichen planus.
Nodule Wheal
Solid, elevated, hard or soft, larger than 1 cm. May extend deeper into dermis than papule.
Examples: xanthoma, fibroma, intradermal nevi.
Superficial, raised, transient, and erythematous;
slightly irregular shape from edema (fluid held
diffusely in the tissues). Examples: mosquito bite,
allergic reaction, dermographism.
Tumor Urticaria (Hives)
339
Larger than a few centimeters in diameter, firm or soft, deeper into dermis; may be benign
or malignant, although “tumor” implies “cancer” to most people. Examples: lipoma,
hemangioma.
Wheals coalesce to form extensive reaction, intensely
pruritic.
Vesicle
Elevated cavity containing free fluid, up to 1 cm; a
“blister.” Clear serum flows if wall is ruptured.
Examples: herpes simplex, early varicella (chickenpox),
herpes zoster (shingles), contact dermatitis.
Bulla
Larger than 1 cm diameter; usually single chambered
(unilocular); superficial in epidermis; thin-walled and
ruptures easily. Examples: friction blister, pemphigus,
burns, contact dermatitis.
Cyst Pustule
Encapsulated fluid-filled cavity in dermis or subcutaneous layer, tensely elevating skin.
Examples: sebaceous cyst, wen.
Turbid fluid (pus) in the cavity. Circumscribed and
elevated. Examples: impetigo, acne.
See Illustration Credits for source information.
Line drawings © Pat Thomas, 2010.
TABLE 13.5
Secondary Skin Lesions
Resulting from a change in a primary lesion from the passage of time; an evolutionary change.
NOTE: Combinations of primary and secondary lesions may coexist in the same person. Such combined designations may be termed papulosquamous,
maculopapular, vesiculopustular, or papulovesicular.
Debris on Skin Surface
340
Crust Scale
The thickened, dried-out exudate left when vesicles/pustules burst or dry up. Color
can be red-brown, honey, or yellow, depending on fluid ingredients (blood, serum,
pus). Examples: impetigo (dry, honey-colored), weeping eczematous dermatitis,
scab after abrasion.
Compact, desiccated flakes of skin, dry or greasy, silvery or
white, from shedding of dead excess keratin cells. Examples:
after scarlet fever or drug reaction (laminated sheets), psoriasis
(silver, micalike), seborrheic dermatitis (yellow, greasy),
eczema, ichthyosis (large, adherent, laminated), dry skin.
Break in Continuity of Surface
Fissure Erosion
Linear crack with abrupt edges; extends into dermis; dry or moist. Examples:
cheilosis—at corners of mouth caused by excess moisture; athlete's foot.
Scooped out but shallow depression. Superficial; epidermis
lost; moist but no bleeding; heals without scar because erosion
does not extend into dermis.
Ulcer Excoriation
Deeper depression extending into dermis, irregular shape; may bleed; leaves scar
when heals. Examples: stasis ulcer, pressure injury, chancre.
Self-inflicted abrasion; superficial; sometimes crusted;
scratches from intense itching. Examples: insect bites, scabies,
dermatitis, varicella.
341
Scar Atrophic Scar
After a skin lesion is repaired, normal tissue is lost and replaced with connective
tissue (collagen). This is a permanent fibrotic change. Examples: healed area of
surgery or injury, acne.
The resulting skin level is depressed with loss of tissue; a
thinning of the epidermis. Example: striae.
Lichenification Keloid
Prolonged, intense scratching eventually thickens skin and produces tightly packed
sets of papules; looks like surface of moss (or lichen).
A benign excess of scar tissue beyond sites of original injury:
surgery, acne, ear piercing, tattoos, infections, burns.16 Looks
smooth, rubbery, shiny and “clawlike”; feels smooth and firm.
Found in ear lobes, back of neck, scalp, chest, and back; may
occur months to years after initial trauma. Most common ages
are 10-30 years; higher incidence in blacks, Hispanics, and
Asians.
See Illustration Credits for source information.
Line drawings © Pat Thomas, 2010.
TABLE 13.6
Pressure Injuries (PI) (Pressure Ulcer, Decubitus Ulcer)
PIs appear on the skin over a bony prominence when circulation is impaired, e.g., when confined to bed or immobilized. Immobilization
impedes delivery of blood carrying oxygen and nutrients to the skin, and it impedes venous drainage carrying metabolic wastes away from the
skin. This results in ischemia and cell death. Common sites for PIs are on the back (heel, ischium, sacrum, elbow, scapula, vertebra) or the side
(ankle, knee, hip, rib, shoulder).
Risk factors for PIs include impaired mobility, thin fragile skin of aging, decreased sensory perception (thus unable to respond to pain
accompanying prolonged pressure), impaired level of consciousness (also unable to respond), moisture from urine or stool incontinence,
excessive perspiration or wound drainage, shearing injury (being pulled down or across in bed), poor nutrition, and infection. Knowledge of
risk factors and prevention of PIs is far more easily accomplished than is treatment of existing ulcers. However, once PIs occur, they are
assessed by stage, depending on the pressure ulcer depth.12 Once stage 3 or 4 ulcers occur, measure wound size daily. Use disposable rulers
with mm and cm markings, and measure the greatest overall wound length and width.
342
Stage 1—Non-Blanchable Erythema Stage 2—Partial-Thickness Skin Loss
Intact skin is red but unbroken. Localized redness in lightly pigmented
skin does not blanch (turn light with fingertip pressure). Dark skin
appears darker but does not blanch. May have changes in sensation,
temperature, or firmness.
Loss of epidermis and exposed dermis. Superficial ulcer looks shallow
like an abrasion or open blister with a red-pink wound bed. No visible fat
or deeper tissue.
Stage 3—Full-Thickness Skin Loss Stage 4—Full-Thickness Skin/Tissue Loss
PI extends into subcutaneous tissue and resembles a crater. See
subcutaneous fat, granulation tissue, and rolled edges, but not muscle,
bone, or tendon.
PI involves all skin layers and extends into supporting tissue. Exposes
muscle, tendon, or bone, and may show slough (stringy matter attached
to wound bed) or eschar (black or brown necrotic tissue), rolled edges,
and tunneling.
Deep Tissue Pressure Injury (DTPI)
Localized, non-blanchable color change to deep red, maroon, purple in intact or nonintact skin. Dark skin appears darker but does not blanch. Or,
epidermis may separate, revealing dark wound or blood-filled blister.12 Preceded by pain and temperature change. Begins in the muscle closest to
the bone, in older adults and those with a lower BMI, commonly on skin over coccyx, sacrum, buttocks, heels.13
PI Caused by Medical Device
Skin or mucosa has PI that looks like pattern or shape of medical device, e.g., IV hub, endotracheal tube, cervical collar, anti-thromboembolism
stocking.7
See Illustration Credits for source information.
343
Abnormal Findings for Advanced Practice
TABLE 13.7
Vascular Lesions
Hemangiomas
Caused by a benign proliferation of blood vessels in the dermis.
Port-Wine Stain (Nevus Flammeus) Strawberry Mark (Immature Hemangioma)
A large, flat, macular patch covering the scalp or face, frequently along the distribution of
cranial nerve V. The color is dark red, bluish, or purplish and intensifies with crying, exertion,
or exposure to heat or cold. The marking consists of mature capillaries. It is present at birth
and usually does not fade. The use of yellow light lasers now makes photoablation of the
lesion possible, with minimal adverse effects.
A raised bright red area with well-defined borders
about 2 to 3 cm in diameter. It does not blanch with
pressure. It consists of immature capillaries, is
present at birth or develops in the first few months,
and usually disappears by age 5 to 7 years. Requires
no treatment, although parental and peer pressure
may prompt treatment.
Cavernous Hemangioma (Mature)
A reddish-blue, irregularly shaped, solid and spongy
mass of blood vessels. It may be present at birth, may
enlarge during the first 10 to 15 months, and does not
involute spontaneously.
Telangiectases
Telangiectasia
Caused by vascular dilation; permanently enlarged
and dilated blood vessels that are visible on the skin
surface.
344
Spider or Star Angioma
A fiery red, star-shaped marking with a solid circular center. Capillary radiations extend from
the central arterial body. With pressure, note a central pulsating body and blanching of
extended legs. Develops on face, neck, or chest; may be associated with pregnancy, chronic
liver disease, or estrogen therapy or may be normal.
Venous Lake
A blue-purple dilation of venules and capillaries in a
star-shaped, linear, or flaring pattern. Pressure causes
them to empty or disappear. Located on the legs near
varicose veins and also on the face, lips, ears, and
chest.
Purpuric Lesions
Caused by blood flowing out of breaks in the vessels. Red blood cells and blood pigments are deposited in the tissues (extravascular). Difficult to see
in dark-skinned people.
Petechiae
Tiny punctate hemorrhages, 1 to 3 mm, round
and discrete; dark red, purple, or brown in color.
Caused by bleeding from superficial capillaries;
will not blanch. May indicate abnormal clotting
factors. In dark-skinned people petechiae are best
visualized in the areas of lighter melanization
(e.g., the abdomen, buttocks, and volar surface of
the forearm). When the skin is black or very dark
brown, petechiae cannot be seen in the skin.
Most of the diseases that cause bleeding and
microembolism formation such as
thrombocytopenia, subacute bacterial
endocarditis, and other septicemias are
characterized by petechiae in the mucous
membranes and on the skin. Thus you should
inspect for petechiae in the mouth, particularly
the buccal mucosa, and in the conjunctivae.
345
Ecchymosis Purpura
A purplish patch resulting from extravasation of blood into the skin, >3 mm in diameter. Confluent and extensive patch of petechiae and
ecchymoses; >3 mm, flat, red to purple, macular
hemorrhage. Seen in generalized disorders such as
thrombocytopenia and scurvy. Also occurs in old age
as blood leaks from capillaries in response to minor
trauma and diffuses through dermis.
Contusion (Bruise)
A mechanical injury (e.g., a blow) results in hemorrhage into tissues. Skin is intact. Color
in a light-skinned person is usually (1) red-blue or purple immediately after or within 24
hours of trauma and generally progresses to (2) blue to purple, (3) blue-green, (4) yellow,
and (5) brown to disappearing. A recent bruise in a dark-skinned person is deep, dark
purple. Note that it is not possible to date the age of a bruise from its color. Pressure on a
bruise will not cause it to blanch. A bruise usually occurs from trauma but can also result
from bleeding disorders and liver dysfunction.
Note that a bruise is different from petechiae, ecchymosis, and purpura because these three
are not caused by blunt force trauma.
See Illustration Credits for source information.
TABLE 13.8
Common Skin Lesions in Children
Diaper Dermatitis Intertrigo (Candidiasis)
Red, moist, maculopapular patch with poorly defined borders in diaper area, extending
along inguinal and gluteal folds. History of infrequent diaper changes or occlusive
coverings. Inflammatory disease caused by skin irritation from ammonia, heat, moisture,
occlusive diapers.
Scalding red, moist patches with sharply demarcated
borders, some loose scales. Usually in genital area
extending along inguinal and gluteal folds. Aggravated
by urine, feces, heat, and moisture; the Candida fungus
infects the superficial skin layers.
346
Impetigo Atopic Dermatitis (Eczema)
Moist, thin-roofed vesicles with thin, erythematous base. Rupture to form erosions and
thick, honey-colored crusts. Highly contagious bacterial infection of skin; most common in
infants and children. Infection can spread to other body areas and other children and adults
by direct contact.17
A chronic inflammatory skin lesion caused by
overstimulated immune system, genetic changes in
skin, and environmental triggers.16 Erythematous
papules and vesicles, with weeping, oozing, flaking,
fissures, crusts, and severe pruritus. Great effect on
quality of life: sleep, behavior, mood, absences from
school and work.
Measles (Rubeola) in Dark Skin Measles (Rubeola) in Light Skin
Red-purple maculopapular blotchy rash in dark skin (on left) and light skin (on right) appears on 3rd or 4th day of illness. Rash appears first behind
ears and spreads over face and then over neck, trunk, arms, and legs; looks “coppery” and does not blanch. Also characterized by Koplik spots in
mouth—bluish white, red-based elevations of 1 to 3 mm (see Table 17.4, p. 372). Vaccine refusal has caused a decline in herd immunity and
numerous outbreaks of infectious diseases.6
347
German Measles (Rubella) Chickenpox (Varicella)
Pink, papular rash (similar to measles but paler) first appears on face, then spreads.
Distinguished from measles by presence of neck lymphadenopathy and absence of Koplik
spots.
Small, tight vesicles first appear on trunk and spread to
face, arms, and legs (not palms or soles). Shiny vesicles
on an erythematous base are commonly described as
the “dewdrop on a rose petal.” Vesicles erupt in
succeeding crops over several days; they become
pustules and then crusts. Intensely pruritic.
See Illustration Credits for source information.
TABLE 13.9
Common Skin Lesions
Primary Contact Dermatitis Allergic Drug Reaction
Local inflammatory reaction to an irritant in the environment or an allergy. Characteristic
location of lesions often gives clue. Often erythema shows first, followed by swelling,
wheals (or urticaria), or maculopapular vesicles, scales. Frequently accompanied by intense
pruritus. Example here: poison ivy.
Erythematous and symmetric rash, usually
generalized. Some drugs produce urticarial rash or
vesicles and bullae. History of drug ingestion.
348
Tinea Corporis (Ringworm of the Body) Tinea Pedis (Ringworm of the Foot)
Scales—hyperpigmented in whites, depigmented in dark-skinned people; on chest,
abdomen, back of arms forming multiple circular lesions with clear centers.
“Athlete’s foot,” a fungal infection, first appears as
small vesicles between toes, on sides of feet, and on
soles; grows scaly and hard. Found in chronically
warm, moist feet: children after gymnasium activities,
athletes, aging adults who cannot dry their feet well.
Psoriasis
A hereditary chronic inflammatory skin disease with
environmental triggers. Plaque psoriasis is a raised
scaly, erythematous patch, with silvery scales, often
pruritic and painful. Occurs on scalp, extensor surfaces
of knees and elbows, lower back.5 Accompanied by
nail pitting, onycholysis (see Table 13.12, p. 242
Tinea Versicolor Herpes Zoster (Shingles)
Fine, scaling, round patches of pink, tan, or white (thus the name) that do not tan in
sunlight, caused by a superficial fungal infection. Usual distribution is on neck, trunk, and
upper arms—a short-sleeved turtleneck sweater area. Most common in otherwise healthy
young adults. Responds to oral antifungal medication.
Small, grouped vesicles emerge along route of
cutaneous sensory nerve, then pustules, then
crusts. Caused by the varicella zoster virus (VZV),
a reactivation of the dormant virus of chickenpox.
Acute appearance, unilateral, does not cross
midline. Commonly on trunk; can be anywhere. If
on ophthalmic branch of cranial nerve V, it poses
risk to eye. Most common in adults older than 50
years. Pain is often severe and long-lasting in aging
adults, called postherpetic neuralgia.
NOTE: Be observant! The photo above is not genital
herpes. This is herpes zoster with a linear lesion on
only one side.
349
Erythema Migrans of Lyme Disease Labial Herpes Simplex (Cold Sores)
Lyme disease (LD) is not fatal but may have serious arthritic, cardiac, or neurologic
sequelae. It is caused by a spirochete bacterium carried by the black or dark brown deer
tick, which is common in the Northeast and upper Midwest (with cases in people who
spend time outdoors) in May through September.
The first stage (early localized LD) has the distinctive bull’s-eye, red macular or papular
rash (shown above) in only 50% of cases. The rash radiates from the site of the tick bite
(5 cm or larger) with some central clearing; it is usually located in axillae, midriff,
inguina, or behind knees, with regional lymphadenopathy. Rash fades in 4 weeks;
untreated individual then may have disseminated disease with fatigue, anorexia, fever,
chills, or joint or muscle aches. Antibiotic treatment shortens symptoms and decreases
risk for sequelae.12a
Herpes simplex virus (HSV) infection has a prodrome
of skin tingling and sensitivity. Lesion then erupts with
tight vesicles followed by pustules and produces acute
gingivostomatitis with many shallow, painful ulcers.
Common location is upper lip; also in oral mucosa and
tongue.
See Illustration Credits for source information.
TABLE 13.10
Malignant Skin Lesions
The link between ultraviolet (UV) radiation and skin cancer is well known; the UV radiation in sunlight and indoor tanning beds promotes all three
forms of skin cancer shown below. More than half a person’s lifetime sun damage occurs before adulthood.
Basal Cell Carcinoma
Usually starts as a small, pink or red papule (may be deeply pigmented)
with a pearly translucent top and overlying telangiectasia (broken blood
vessel). Then develops rounded, pearly borders with central red ulcer or
looks like large open pore with central yellowing. Most common form of
skin cancer; slow but inexorable growth. Basal cell cancers occur on sun-
exposed areas of face, ears, scalp, shoulders.
Squamous Cell Carcinoma
Squamous cell cancers arise from actinic keratoses or de novo. Erythematous
scaly patch with sharp margins, 1 cm or more. Develops central ulcer and
surrounding erythema. Usually on hands or head, areas exposed to UV
radiation; at right, on habitually sun-exposed bald scalp. Less common than
basal cell carcinoma but grows rapidly.
350
Malignant Melanoma
The malignant transformation of melanocytes may arise from preexisting nevus or de novo. Usually brown; can be tan, black, pink-red, purple, or
mixed pigmentation. Often irregular or notched borders. May have scaling, flaking, oozing texture. Risk factors are UV radiation from sun exposure
and indoor tanning, aging, and family history. In men, most melanomas are located on the trunk and back; in women most are on the legs and feet;
in older adults, most are on the head and neck.4 Of the major subtypes of early melanoma, the most common is superficial spreading melanoma
left); it begins as a brown to black macule with irregular borders and color variation. Nodular melanoma (on right) is the next most common, with
quickly growing blue, black, pink or red nodules, possibly with ulceration or bleeding.
TABLE 13.11
Abnormal Conditions of Hair
AIDS-Related Kaposi Sarcoma: Patch Stage Toxic Alopecia
Kaposi sarcoma (KS) is a common vascular cancer in HIV-infected persons.
Considered an AIDS-defining illness, KS can occur at any stage of HIV
infection. Here multiple patch-stage early lesions are faint pink on the temple
and beard area. They easily could be mistaken for bruises or nevi and be
ignored. The use of highly active antiretroviral therapy has decreased the risk
of this cancer.
Patchy, asymmetric balding that accompanies severe illness or use of
chemotherapy in which growing hairs are lost and resting hairs are
spared. Regrowth occurs after illness or discontinuation of toxin.
Tinea Capitis (Scalp Ringworm)
Rounded, patchy hair loss on scalp, leaving broken-off hairs,
pustules, and scales on skin. Caused by fungal infection; lesions may
fluoresce blue-green under Wood’s light. Usually seen in children
and farmers; highly contagious; may be transmitted by another
person, by domestic animals, or from soil.
Traction Alopecia
The cause is mechanical, not androgenic, and the hair loss is linear or
351
oval along hairline, a part in hair, or scattered. The “fringe sign” is
alopecia along the temporal hairline. Trauma is from tight braiding,
tight ponytail, barrettes, cornrows, hair weaves. Black hair is
intrinsically fragile and the continuous pulling in one direction can
break hair and cause loss. Improves with loosening the braids,
especially around the hairline, redoing braids after 2 to 3 months in a
different direction, or using larger-diameter braids.9
Seborrheic Dermatitis (Cradle Cap) Folliculitis Barbae (“Razor Bumps”)
Thick, yellow-to-white, greasy, adherent scales with mild erythema on scalp
and forehead; very common in early infancy. Resembles eczema lesions,
except that cradle cap is distinguished by absence of pruritus, presence of
“greasy” yellow-pink lesions, and negative family history of allergy.
Superficial inflammatory infection of hair follicles. Multiple pustules,
“whiteheads,” with hair visible at center and erythematous base.
Usually involves face and neck and is common in black and Latino
men if they have tight curly hair. Occurs after shaving when growing
out hairs curl in on themselves and pierce the skin, making a foreign-
body inflammatory reaction.
Pediculosis Capitis (Head Lice)
History includes intense itching of the scalp, especially the occiput. The nits
(eggs) of lice are easier to see in the occipital area and around the ears,
352
appearing as 2- to 3-mm oval translucent bodies, adherent to the hair shafts.
Common among school-age children. Over-the-counter pediculicide
shampoos are available; however, nit removal by daily combing of wet hair
with a fine-tooth metal comb is especially important.
Hirsutism Furuncle and Abscess
Excess body hair in females forming a male sexual pattern (upper lip, face,
chest, abdomen, arms, legs); caused by endocrine or metabolic dysfunction, or
occasionally is idiopathic.
Red, swollen, hard, tender, pus-filled lesion caused by acute,
localized bacterial (usually staphylococcal) infection; usually on back
of neck, buttocks, occasionally on wrists or ankles. Furuncles are
caused by infected hair follicles, whereas abscesses are caused by
traumatic introduction of bacteria into skin. Abscesses are usually
larger and deeper than furuncles.
See Illustration Credits for source information.
TABLE 13.12
Abnormal Conditions of the Nails
Scabies Paronychia
An intensely pruritic contagion caused by the scabies mite. Mites form a linear or curved
elevated burrow on the fingers, web spaces of hands, and wrists. Highly contagious. Severe
itching causes sleep disturbance and bacterial skin infections. A common communicable
disease in resource-poor countries.
Red, swollen, tender inflammation of the nail folds.
Acute paronychia is usually a bacterial infection with
pus in the proximal nail fold, pain, and throbbing.
Chronic paronychia is most often a fungal infection
from a break in the cuticle in those who perform “wet”
work.
353
Beau Line Splinter Hemorrhages
Transverse furrow or groove. A depression across the nail that extends down to the nail
bed. Occurs with any trauma that temporarily impairs nail formation such as acute illness,
toxic reaction, or local trauma. Dent appears first at cuticle and moves forward as nail
grows.
Red-brown linear streaks from damage to nail bed
capillaries. They occur with systemic diseases
(vasculitis), with trauma or sports-related injuries, and
with endocarditis.
Onychomycosis Late Clubbing
This is a slow, persistent fungal infection of fingernails and, more often, toenails, common in
older adults. Fungus causes change in color (green where nail plate separated from bed),
texture, and thickness, with nail crumbling or breaking and loosening of the nail plate,
usually beginning at the distal edge and progressing proximally.
Inner edge of nail elevates; nail bed angle is greater
than 180 degrees. Distal phalanx looks rounder,
wider, and shiny.
Chronic lung inflammation, lung cancers, heart
defects with right-to-left shunts may cause release
of growth factors (e.g., platelet-derived growth
factor) and promote growth of vessels. Clubbing
usually develops slowly over years; if the primary
disease is treated, clubbing can reverse.
Pitting Habit-Tic Dystrophy
Sharply defined pitting and crumbling of nails with distal detachment often occurs with
psoriasis.
Depression down middle of nail or multiple horizontal
ridges caused by continuous picking of cuticle by
another finger of same hand, which causes injury to
nail base and nail matrix.
See Illustration Credits for source information.
354
355
Summary Checklist: Skin, Hair, and Nails Examination
1. Inspect the skin:
Color
General pigmentation
Areas of hypopigmentation or hyperpigmentation
Abnormal color changes
2. Palpate the skin:
Temperature
Moisture
Texture
Thickness
Edema
Mobility and turgor
Hygiene
Vascularity or bruising
3. Note any lesions:
Color
Shape and configuration
Size
Location and distribution on body
4. Inspect and palpate the hair:
Texture
Distribution
Any scalp lesions
5. Inspect and palpate the nails:
Shape and contour
Consistency
Color
6. Teach skin self-examination
356
References
1. American Cancer Society (ACS). Cancer Facts & Figures 2017.
https://www.cancer.org/cancer-facts-and-figures-2017 ; 2017.
2. Balk SJ, Gottschlich A, Holman DM, et al. Counseling on sun protection and
indoor tanning. Pediatr. 2017;140(6):1–10.
3. Bridges E. Assessing patients during septic shock resuscitation. Am J Nurs.
2017;117(10):34–41.
4. Canavan T, Cantrell W. Recognizing melanoma: Diagnosis and treatment
options. Nurse Pract. 2016;41(4):24–29.
5. Cantrell W. Psoriasis & psoriatic therapies. Nurse Pract. 2017;42(7):35–39.
6. Colgrove J. Vaccine refusal revisited – The limits of public health persuasion and
coercion. N Engl J Med. 2016;375(14):1316–1354.
7. Delmore BA, Ayello EA. Pressure injuries caused by medical devices and other
objects. Am J Nurs. 2017;117(12):36–46.
8. Driscoll DW, Darcy J. Indoor tanning legislation. Pediat Nurs. 2015;41(2):59–88.
9. Haskin A, Aguh C. All hairstyles are not created equal: What the dermatologist
needs to know about black hairstyling practices and the risk of traction alopecia
(TA). (2016). J Am Acad Dermatol. 2016;75(2):606–611.
10. Islami F, Sauer AG, Miller KD, et al. Proportion and number of cancer cases and
deaths attributable to potentially modifiable risk factors in the United States. CA
Cancer J Clin. 2018;68(1):31–54.
11. Jensen JD, Elewski BE. The ABCDEF Rule: Combining the “ABCDE Rule” and the
“Ugly duckling” sign in an effort to improve patient self-screening examinations.
J Clin Aesthet Dermatol. 2015;8(2):15.
12. National Pressure Ulcer Advisory Panel (NPAUP). NPUAP pressure injury stages.
http://www.npuap.org/resources/educational-and-clinical-resources/npuap-
pressure-injury-stages/; 2016.
12a. Patton SK. Lyme disease: Diagnosis, treatment, and prevention. Am J Nurs.
2018;118(4):38–46.
13. Preston A, Rao A, Strauss R, et al. Deep tissue pressure injury. Am J Nurs.
2017;117(5):50–57.
14. Shain AH, Kovalyshyn I, Sriharan A, et al. The genetic evolution of melanoma
from precursor lesions. N Engl J Med. 2015;373(20):1926–1935.
15. Simunovic C, Shinohara MM. Complications of decorative tattoos. Am J Clin
Dermatol. 2014;15:525–536.
16. Stein SL, Cifu AS. Management of atopic dermatitis. JAMA. 2016;315(14):1510–
1511.
17. VanRavenstein K, Durham CO, Williams TH, et al. Diagnosis and management of
impetigo. Nurse Pract. 2017;42(3):40–44.
18. Wellbrock C. Melanoma and the microenvironment – age matters. N Engl J Med.
2016;375(7):696–698.
19. Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines of care for the
management of acne vulgaris. J Am Acad Dermatol. 2016;74:945–973.
aPlease note that space does not allow a detailed plan for each sample clinical problem in the text.
Please develop your own treatment plans as a critical-thinking exercise.
357
https://www.cancer.org/cancer-facts-and-figures-2017
http://www.npuap.org/resources/educational-and-clinical-resources/npuap-pressure-injury-stages/
358
C H A P T E R 1 4
359
Head, Face, Neck, and Regional Lymphatics
360
Structure and Function
The Head
The skull is a rigid bony box that protects the brain and special sense organs, and it includes the
bones of the cranium and the face (Fig. 14.1). Note the location of these cranial bones: frontal,
parietal, occipital, and temporal. Use these names to describe any of your clinical findings in the
corresponding areas.
14.1 (© Copyright Pat Thomas, 2018.)
The adjacent cranial bones unite at meshed immovable joints called the sutures. The bones are
not firmly joined at birth; this allows for the mobility and change in shape needed for the birth
process. The sutures gradually ossify during early childhood. The coronal suture crowns the head
from ear to ear at the union of the frontal and parietal bones. The sagittal suture separates the head
lengthwise between the two parietal bones. The lambdoid suture separates the parietal bones
crosswise from the occipital bone.
The 14 facial bones also articulate at sutures (note the nasal bone, zygomatic bone, and maxilla),
except for the mandible (the lower jaw). It moves up, down, and sideways from the
temporomandibular joint, which is anterior to each ear.
The cranium is supported by the cervical vertebrae: C1, the “atlas”; C2, the “axis”; and down to
C7. The C7 vertebra has a long spinous process that is palpable when the head is flexed. Feel this
useful landmark, the vertebra prominens, on your own neck.
Inside the skull the brain is held by membranous meninges. These suspend and support the brain
and are shock absorbers in case of trauma. Because of the rigid bone, a traumatic blow to the skull
jostles the brain back and forth and may reult in concussion (see p. 262).
The human face has many appearances and expressions that reflect mood. The expressions are
formed by the facial muscles (Fig. 14.2), which are mediated by cranial nerve VII, the facial nerve.
Facial muscle function is symmetric bilaterally, except for an occasional quirk or wry expression.
361
14.2 (© Copyright Pat Thomas, 2018.)
Facial structures are symmetric; the eyebrows, eyes, ears, nose, and mouth appear about the same
on both sides. The palpebral fissures—the openings between the eyelids—are equal bilaterally. Also
the nasolabial folds—the creases extending from the nose to each corner of the mouth—should look
symmetric. Facial sensations of pain or touch are mediated by the 3 sensory branches of cranial
nerve V, the trigeminal nerve. (Testing for sensory function is described in Chapter 24.)
Two pairs of salivary glands are accessible to examination on the face (Fig. 14.3). The parotid
glands are in the cheeks over the mandible, anterior to and below the ear. They are the largest of the
salivary glands but are not normally palpable. The submandibular glands are beneath the
mandible at the angle of the jaw. A third pair, the sublingual glands, lie in the floor of the mouth.
(Salivary gland function follows in Chapter 17.) The temporal artery lies superior to the temporalis
muscle; its pulsation is palpable anterior to the ear.
362
14.3
The Neck
The neck is delimited by the base of the skull and inferior border of the mandible above and by the
manubrium sterni, the clavicle, the first rib, and the first thoracic vertebra below. Think of the neck
as a conduit for the passage of many structures that are lying in close proximity: blood vessels,
muscles, nerves, lymphatics, and viscera of the respiratory and digestive systems. Blood vessels
include the common and internal carotid arteries and their associated veins (see Fig. 14.3). The
internal carotid artery branches off the common carotid and runs inward and upward to supply the
brain; the external carotid artery supplies the face, salivary glands, and superficial temporal area.
The carotid artery and internal jugular vein lie beneath the sternomastoid muscle. The external
jugular vein runs diagonally across the sternomastoid muscle. (See assessment of the neck vessels in
Chapter 20.)
The major neck muscles are the sternomastoid and the trapezius (Fig. 14.4); they are innervated
by cranial nerve XI, the spinal accessory. The sternomastoid muscle arises from the sternum and the
clavicle and extends diagonally across the neck to the mastoid process behind the ear. It
accomplishes head rotation and flexion. The two trapezius muscles on the upper back arise from the
occipital bone and the vertebrae and extend fanning out to the scapula and clavicle. The trapezius
muscles move the shoulders and extend and turn the head.
363
14.4
The sternomastoid muscle divides each side of the neck into two triangles. The anterior triangle
lies in front, between the sternomastoid and the midline of the body, with its base up along the
lower border of the mandible and its apex down at the suprasternal notch. The posterior triangle is
behind the sternomastoid muscle, with the trapezius muscle on the other side and its base along the
clavicle below. It contains the posterior belly of the omohyoid muscle. These triangles are helpful
guidelines when describing findings in the neck.
The thyroid gland is an important endocrine gland with a rich blood supply. It straddles the
trachea in the middle of the neck (Fig. 14.5). This highly vascular endocrine gland synthesizes and
secretes thyroxine (T4) and triiodothyronine (T3), hormones that stimulate the rate of cellular
metabolism. The gland has two lobes, both conical in shape, each curving posteriorly between the
trachea and the sternomastoid muscle. The lobes are connected by a thin isthmus.
14.5
The neck cartilages are important landmarks for locating the thyroid gland. The thyroid cartilage
364
has a small, palpable V in its upper edge. This is the prominent “Adam’s apple” in men. Beneath
that is the cricoid cartilage, or upper tracheal ring. Beneath the cricoid cartilage, the isthmus of the
thyroid gland hugs the 2nd and 3rd tracheal rings.
Lymphatics
The lymphatic system is developed more fully in Chapter 21. However, the head and neck have a
rich supply of 60 to 70 lymph nodes (Fig. 14.6). Note that their labels correspond to adjacent
structures.
14.6
• Preauricular, in front of the ear
• Posterior auricular (mastoid), superficial to the mastoid process
• Occipital, at the base of the skull
• Submental, midline, behind the tip of the mandible
• Submandibular, halfway between the angle and the tip of the
mandible
• Jugulodigastric (tonsillar), under the angle of the mandible
• Superficial cervical, overlying the sternomastoid muscle
• Deep cervical, deep under the sternomastoid muscle
• Posterior cervical, in the posterior triangle along the edge of the
trapezius muscle
• Supraclavicular, just above and behind the clavicle, at the
sternomastoid muscle
You also should be familiar with the direction of the drainage patterns of the lymph nodes (Fig.
14.7). When nodes are enlarged, check the area they drain for the source of the problem. Explore the
area proximal (upstream) to the enlarged node. All head and neck structures eventually drain into
365
the deep cervical chain.
14.7
The lymphatic system is a separate vessel system from the cardiovascular system and a major
part of the immune system, whose job it is to detect and eliminate foreign substances from the
body. The vessels gather the clear, watery fluid (lymph) from the tissue spaces into the circulation.
Lymph nodes are small, oval clusters of lymphatic tissue that are set at intervals along the lymph
vessels like beads on a string. The nodes slowly filter the lymph and engulf pathogens, preventing
harmful substances from entering the circulation. Nodes are located throughout the body but are
accessible to examination only in four areas: head and neck, arms, axillae, and inguinal region. The
greatest supply is in the head and neck.
Developmental Competence
Infants and Children
The bones of the neonatal skull are separated by sutures and fontanels, the spaces where the
sutures intersect (Fig. 14.8). These membrane-covered “soft spots” allow for growth of the brain
during the 1st year. They gradually ossify; the triangle-shaped posterior fontanel is closed by 1 to 2
months, and the diamond-shaped anterior fontanel closes between 9 months and 2 years.
14.8 © Pat Thomas, 2006.
366
During the fetal period head growth predominates. Head size is greater than chest circumference
at birth. The head size grows during childhood, reaching 90% of its final size when the child is 6
years old. But during infancy, trunk growth predominates, so head size changes in proportion to
body height. Facial bones grow at varying rates, especially nasal and jaw bones. In the toddler the
mandible and maxilla are small, and the nasal bridge is low; thus the whole face seems small
compared with the skull.
Lymphoid tissue is well developed at birth and grows to adult size when the child is 6 years old.
The child’s lymphatic tissue continues to grow rapidly until age 10 or 11 years, actually exceeding
its adult size before puberty. Then the lymphatic tissue slowly atrophies.
In adolescence facial hair appears on boys, first above the lip, then on cheeks and below the lip,
and last on the chin. A noticeable enlargement of the thyroid cartilage occurs, and with it the voice
deepens.
The Pregnant Woman
The thyroid gland enlarges slightly during pregnancy as a result of hyperplasia of the tissue and
increased vascularity.
The Aging Adult
The facial bones and orbits appear more prominent, and the facial skin sags as a result of decreased
elasticity, decreased subcutaneous fat, and decreased moisture in the skin. The lower face may look
smaller if teeth have been lost.
Culture and Genetics
Headache.
Headache (HA) is a leading cause of acute pain and lost productivity, as well as a leading reason for
seeking care in outpatient offices, urgent care centers, and emergency departments. Headaches are
classified by etiology (see Table 14.1, p. 265) (tension, migraine, sinus); however, misdiagnosis is
common, with migraine especially being misclassified as sinus or tension HA. Migraine HA is
particularly disabling, affecting work productivity, routine household chores, and social
relationships.11 Chronic migraine (frequency ≥15 days/month) is more common in women than
men, with peaks in midlife for both sexes. Chronic migraine is more prevalent among whites and
Hispanics. The traditional etiologic explanation was spasm of cerebral vessels, causing vasodilation.
Current theories include stimulation of cranial nerve V (trigeminal), with neurotransmitter changes
in the central nervous system and changes in vessel tone.4
367
Subjective Data
1. Headache
2. Head injury
3. Dizziness
4. Neck pain, limitation of motion
5. Lumps or swelling
6. History of head or neck surgery
Examiner Asks/Rationale
1. Headache.
Any unusually frequent or unusually severe
headaches?
• Onset. When did this kind of headache start?
• Gradual, over hours or a day?
• Or suddenly, over minutes or less than 1 hour?
This is a more meaningful question than “Do you ever have headaches?” because
most people have had at least one HA. Because many conditions have a HA a
detailed history is important.
• Ever had this kind of headache before? A red flag is a severe HA in an adult or child who has never had one before.
• Location. Where do you feel it: frontal, temporal,
behind your eyes, like a band around the head, in the
sinus area, or in the occipital area?
Tension headaches are occipital, frontal, or with bandlike tightness; migraines are
supraorbital, retro-orbital, or frontotemporal; sinus headaches produce pain
around the eye or cheek.
• Is pain localized on one side or all over? Unilateral or bilateral (e.g., with cluster headaches, pain is always unilateral and
always on the same side of the head).
• Character. Throbbing (pounding, shooting) or aching
(viselike, constant pressure, dull)?
Character is viselike with tension headache, throbbing with migraine or temporal
arteritis (see Table 14.1, p. 265).
• Is it mild, moderate, or severe? Pain is often severe with migraine or excruciating with cluster headache.
• Course and duration. What time of day do the
headaches occur: morning, evening, awaken you from
sleep?
How long do they last? Hours, days?
Have you noted any daily headaches or several within
a time period?
Migraines occur ≥15 days/month if chronic or <15 days/month if episodic; each
lasting 1 to 3 days.
• Precipitating factors. What brings it on: activity or
exercise, work environment, emotional upset, anxiety,
alcohol? (Also note signs of depression.)
Alcohol, stress, menstruation, and eating chocolate or cheese may precipitate
migraines.
• Associated factors. Any relation to other symptoms:
any nausea and vomiting? (Note which came first,
headache or nausea.) Any vision changes, pain with
bright lights, neck pain or stiffness, fever, weakness,
moodiness, stomach problems?
Nausea, vomiting, and visual disturbances are associated with migraines; anxiety
and stress are associated with tension headaches; nuchal rigidity and fever are
associated with meningitis or encephalitis.
• Do you have any other illness? Hypertension, fever, hypothyroidism, and vasculitis produce headaches.
• Do you take any medications? Oral contraceptives, bronchodilators, alcohol, nitrates, and carbon monoxide
inhalation produce headaches.
• What makes it worse: movement, coughing, straining,
exercise?
• Pattern. Any family history of headache? Migraines have a family history.
• What is the frequency of your headaches: once a week?
Are your headaches occurring closer together?
• Are they getting worse? Or are they getting better?
• (For females) When do they occur in relation to your
menstrual periods?
See Table 14.1, Primary Headaches, p. 265.
• Effort to treat. What seems to help: going to sleep,
medications, positions, rubbing the area?
With migraines people lie down to feel better, whereas with cluster headaches
they need to move—even to pace the floor—to feel better.
• Patient-centered care. How have these headaches
affected your self-care or your ability to function at
work, home, and socially? What do you need to help
you cope?
2. Head Injury.
Any head injury or blow to your head?
Concussion results after a direct blow to the skull causes the brain to shift
rapidly back and forth inside (see Health Promotion and Patient Teaching, p.
262).
Evidence consistently shows that helmet use decreases the severity of injuries
after a motorcycle crash and increases the chance of survival.2
• Onset. When? Please describe exactly what happened.
• Setting. Any hazardous conditions? Were you wearing
a helmet or hard hat?
• How did you feel just before injury: dizzy, light-
headed, had a blackout, had a seizure?
• Lose consciousness and then fall? (Note which came
first.)
• Knocked unconscious? Or did you fall and lose
consciousness a few minutes later?
Loss of consciousness before a fall may have a cardiac cause (e.g., heart block).
• Any history of illness (e.g., heart trouble, diabetes,
368
epilepsy)?
• Location. Exactly where did you hit your head?
• Duration. How long were you unconscious? Any
symptoms afterward—headache, vomiting, projectile
vomiting? Any change in level of consciousness after
injury: dazed or sleepy?
A changing level of consciousness is most important in evaluating neurologic
deficit.
• Associated symptoms. Any pain in the head or neck,
vision change, discharge from ear or nose—is it bloody
or watery? Are you able to move all extremities? Any
tremors, staggered walk, numbness, and tingling?
• Pattern. Are symptoms worse, better, unchanged since
injury?
• Effort to treat. Emergency department or hospitalized?
Any medications?
3. Dizziness.
Experienced any dizziness?
Tell me what you mean by dizziness. Describe it for
me. (“Dizziness” is a vague, general term, related to
multiple causes. Try not to prompt the person by
suggesting descriptors such as “spinning,” but note
words offered. “I feel like I'm going to faint” suggests
presyncope; “I feel like I'm spinning” suggests
vertigo; “I feel like I'm going to fall down” suggests
disequilibrium.7)
Dizziness includes: Presyncope, a light-headed, swimming sensation or feeling of
fainting or falling caused by decreased blood flow to brain or heart irregularity
causing decreased cardiac output. Vertigo is true rotational spinning often from
labyrinthine-vestibular disorder in inner ear. With objective vertigo the person
feels like the room is spinning; with subjective vertigo the person feels like he or
she is spinning. Disequilibrium is a shakiness or instability when walking
related to musculoskeletal disorder or multisensory deficits.7
• Onset. Abrupt or gradual? After a change in position
such as sudden standing?
• Associated factors. Any nausea and vomiting, pallor,
immobility, decreased hearing acuity, or tinnitus along
with the dizziness? Any palpitations or shortness of
breath?
Vertigo together with unilateral hearing loss suggests Meniere disease.12
4. Neck Pain.
Any neck pain?
• Onset. How did the pain start: injury, automobile
accident, after lifting, from a fall? Or with fever? Or did
it have a gradual onset?
Acute onset of neck stiffness, HA, fever occurs with meningitis.
• Location. Does pain radiate? To the shoulders, arms?
• Associated symptoms. Any limitations to range of
motion (ROM), numbness or tingling in shoulders,
arms, or hands?
• Precipitating factors. Which movements cause pain? Do
you need to lift or bend at work or home?
• Does stress seem to bring it on?
• Patient-centered care. Able to do your work, sleep?
What do you need to help you cope?
Pain creates a vicious circle. Tension increases pain and disability, which
produces more anxiety.
5. Lumps or Swelling.
Any lumps or swelling in the neck?
Any recent infection? Any tenderness? Tenderness suggests acute infection.
For a lump that persists, how long have you had it? Has
it changed in size?
A persistent lump arouses suspicion of malignancy. For people older than 40
years, suspect malignancy until proven otherwise.
• Any history of prior irradiation of head, neck, upper
chest?
Increased risk for salivary and thyroid tumors.
• Any difficulty swallowing? Dysphagia.
• Do you smoke? For how long? How many packs a day?
Do you chew tobacco?
Smoking and chewing tobacco increase risk for oral and respiratory cancer.
• When was your last alcoholic drink? How much
alcohol do you drink a day?
Smoking and moderate-to-heavy alcohol drinking increase the risk for cancer.
• Ever had a thyroid problem? Overfunctioning or
underfunctioning? How was it treated: surgery,
irradiation, any medication?
6. History of Head or Neck Surgery.
Ever had surgery of the head or neck? For what
condition? When did the surgery occur? How do you
feel about results?
Surgery for head and neck cancer often is disfiguring and increases risk for body
image disturbance.
Additional History for Infants and Children
1. Did the mother use alcohol or street drugs during
pregnancy? How often? How much was used per
episode?
Alcohol increases the risk for fetal alcohol spectrum disorders, with distinctive
facial features (see Table 14.2, p. 268). Cocaine use causes neurologic,
developmental, and emotional problems.
2. Was delivery vaginal or by cesarean section? Any
difficulty? Use of forceps?
Forceps may increase the risk for caput succedaneum, cephalhematoma, and Bell
palsy.
3. What were you told about the baby's growth? Was it
on schedule? Did the head seem to grow and fontanels
close on schedule? Did the baby achieve head control?
At about what age (in months)?
Additional History for the Aging Adult
1. Patient-centered care. If dizziness is a problem, how
does this affect your daily activities? Are you able to
drive safely, maneuver about the house safely?
Assess self-care. Assess potential for injury.
2. If neck pain is a problem, how does this affect your
daily activities? Are you able to turn head while
driving, perform at work, do housework, sleep, look
369
down when using stairs?
370
Objective Data
Normal Range of Findings/Abnormal Findings
The Head
Inspect and Palpate the Skull
Size and Shape
Note the general size and shape. Normocephalic is the term that denotes a round symmetric skull that is
appropriately related to body size. Be aware that “normal” includes a wide range of sizes.
Microcephaly, abnormally
small head; macrocephaly,
abnormally large head
(hydrocephaly, acromegaly).
(See Table 14.2, p. 266).
To assess shape, place your fingers in the person's hair and palpate the scalp. The skull normally feels symmetric
and smooth. Cranial bones that have normal protrusions are the forehead, the side of each parietal bone, the
occipital bone, and the mastoid process behind each ear. There is no tenderness to palpation.
Note lumps, depressions, or
abnormal protrusions.
Temporal Area
Palpate the temporal artery above the zygomatic (cheek) bone between the eye and top of the ear. Tenderness and a hard band to
palpation with temporal
arteritis.
The temporomandibular joint is just below the temporal artery and anterior to the tragus. Palpate the joint as the
person opens the mouth and note normally smooth movement with no limitation or tenderness.
Crepitation, limited ROM, or
tenderness.
Inspect the Face
Facial Structures
Inspect the face, noting the facial expression and its appropriateness to behavior or reported mood. Anxiety is
common in the hospitalized or ill person.
Hostility or aggression.
Tense, rigid muscles may
indicate anxiety or pain; a
flat affect may indicate
depression.
Although the shape of facial structures may vary somewhat depending on ancestry, features always should be
symmetric. Expect symmetry of eyebrows, palpebral fissures, nasolabial folds, and sides of the mouth.
Marked asymmetry with
central brain lesion (e.g.,
stroke) or peripheral cranial
nerve VII damage (Bell palsy).
See Table 14.5, Abnormal
Facies With Chronic Illness,
272.
Note any abnormal facial structures (coarse facial features, exophthalmos, changes in skin color or pigmentation) or
any abnormal swelling. Also note any involuntary movements (tics) in the facial muscles. Normally none occur.
Edema in the face occurs
first around the eyes
(periorbital) and the
cheeks, where the
subcutaneous tissue is
relatively loose.
Note grinding of jaws, tics,
fasciculations, or excessive
blinking.
Nystagmis accompanies a
presenting concern of
vertigo.
The Neck
Inspect and Palpate the Neck
Symmetry
Head position is centered in the midline, and the accessory neck muscles should be symmetric. The head should be
held erect and still.
Head tilt occurs with muscle
spasm. Rigid head and neck
occur with arthritis.
Range of Motion (ROM)
Note any limitation of movement during active motion. Ask the person to touch the chin to the chest, turn the head
to the right and left, try to touch each ear to the shoulder (without elevating shoulders), and extend the head
backward. When the neck is supple, motion is smooth and controlled.
Note pain at any specific
movement.
Note ratchety or limited
movement from cervical
arthritis or inflammation of
neck muscles. The arthritic
neck is rigid; the person
turns at the shoulders
rather than at the neck.
Test muscle strength and the status of cranial nerve XI by trying to resist the person's movements with your hands
as the person shrugs the shoulders and turns the head to each side.
As the person moves the head, note enlargement of the salivary and lymph glands. Normally, no enlargement is
present. Note a swollen parotid gland when the head is extended; look for swelling below the angle of the jaw. Also
note thyroid gland enlargement. Normally, none is present.
Thyroid enlargement may be a
unilateral lump, or it may be
diffuse and look like a
doughnut lying across the
lower neck (see Table 14.3
Swellings on the Head or Neck,
p. 269).
Also note any obvious pulsations. The carotid artery runs medial to the sternomastoid muscle, and it creates a brisk
localized pulsation just below the angle of the jaw. Normally, there are no other pulsations while the person is in the
sitting position (see Chapter 20).
Lymph Nodes
Using a gentle circular motion of your finger pads, palpate the lymph nodes (Fig. 14.9). (Normally, the salivary The parotid is swollen with
371
glands are not palpable. When symptoms warrant, check for parotid tenderness by palpating in a line from the
outer corner of the eye to the lobule of the ear.) Beginning with the preauricular lymph nodes in front of the ear,
palpate the 10 groups of lymph nodes in a routine order. Many nodes are closely packed, so you must be systematic
and thorough in your examination. Once you establish your sequence, do not vary or you may miss some small
nodes.
14.9
mumps (see Table 14.3
270).
Parotid enlargement has
been found with AIDS. See
discussion of enlarged
lymph nodes,
lymphadenopathy, p. 256
Use gentle pressure because strong pressure could push the nodes into the neck muscles. It is usually most efficient
to palpate with both hands, comparing the two sides symmetrically. However, the submental gland under the tip of
the chin is easier to explore with one hand. When you palpate with one hand, use your other hand to position the
person's head. For the deep cervical chain, tip the person's head toward the side being examined to relax the
ipsilateral muscle (Fig. 14.10). Then you can press your fingers under the muscle. Search for the supraclavicular
node by having the person hunch the shoulders and elbows forward (Fig. 14.11); this relaxes the skin. The inferior
belly of the omohyoid muscle crosses the posterior triangle here; do not mistake it for a lymph node.
14.10 Palpate the deep cervical chain.
372
14.11 Palpate supraclavicular nodes.
If any nodes are palpable, note their location, size, shape, delimitation (discrete or matted together), mobility,
consistency, and tenderness. Cervical nodes often are palpable in healthy persons, although this palpability
decreases with age (Fig. 14.12, A). Normal nodes feel movable, discrete, soft, and nontender.
14.12, A
Lymphadenopathy means
enlargement of the lymph
nodes (>1 cm) from infection,
allergy, or neoplasm. (See
14.12, B, due to infectious
mononucleosis.)
14.12, B
(Dean,
Garrett,
and Tyrrell,
2008.)
If nodes are enlarged or tender, check the area they drain for the source of the problem. For example, those in the
upper cervical or submandibular area often relate to inflammation or a neoplasm in the head and neck. Follow up
on or refer your findings. An enlarged lymph node, particularly when you cannot find the source of the problem,
deserves prompt attention.
The following criteria are
common clues but are not
definitive in all cases:
• Acute infection—acute onset,
<14 days' duration; nodes are
bilateral, enlarged, warm,
tender, and firm but freely
movable.
• Chronic inflammation (e.g.,
in tuberculosis the nodes are
clumped).
• Cancerous nodes are hard
(feel like a rock), >3 cm,
unilateral, nontender, matted,
and fixed to adjacent
structures.
• Nodes with HIV infection are
enlarged, firm, nontender,
and mobile. Occipital node
373
enlargement is common with
HIV infection.
• A single enlarged, nontender,
hard left supraclavicular
node may indicate neoplasm
in thorax or abdomen
(Virchow node).
• Painless, rubbery, discrete
nodes that gradually appear
occur with Hodgkin
lymphoma, commonly in the
cervical region.
Trachea
Normally, the trachea is midline; palpate for any tracheal shift. Place your index finger on the trachea in the sternal
notch and slip it off to each side (Fig. 14.13). The space should be symmetric on both sides. Note any deviation from
the midline.
14.13
Conditions of tracheal
shift:
• The trachea is pushed to the
unaffected (or healthy) side
with an aortic aneurysm, a
tumor, unilateral thyroid lobe
enlargement, and
pneumothorax.
• The trachea is pulled toward
the affected (diseased) side
with large atelectasis, pleural
adhesions, or fibrosis.
• Tracheal tug is a rhythmic
downward pull that is
synchronous with systole and
occurs with aortic arch
aneurysm.
Thyroid Gland
The thyroid gland is difficult to palpate; arrange your setting to maximize your likelihood of success. Position a
standing lamp to shine tangentially across the neck to highlight any possible swelling. Tilt the head back to stretch
the skin against the thyroid. Supply the person with a glass of water and first inspect the neck as the person takes a
sip and swallows. Thyroid tissue moves up with a swallow and then falls into its resting position.
Look for diffuse enlargement
or a nodular lump.
Posterior Approach.
To palpate, move behind the person (Fig. 14.14, A). Ask the person to sit up very straight and then to bend the
head slightly forward and to the right. This relaxes the neck muscles on the right side. Use the fingers of your
left hand to push the trachea slightly to the right.
14.14, A
Abnormalities: enlarged lobes
that are easily palpated before
swallowing or are tender to
palpation (see large goiter in
Fig. 14.14, B) or the presence of
nodules or lumps. See Table
14.4, Thyroid Hormone
Disorders, p. 271.
14.14, B
(Lemmi &
Lemmi,
2011.)
Curve your right fingers between the trachea and the sternomastoid muscle, retracting it slightly, and ask the
374
person to take a sip of water. The thyroid moves up under your palpating fingers with the trachea and larynx as the
person swallows. Reverse the procedure for the left side.
Often you cannot palpate the normal adult thyroid. If the person has a long, thin neck, you sometimes feel the
isthmus over the tracheal rings. The lateral lobes usually are not palpable; palpable lobes feel rubbery but smooth.
Check them for enlargement, consistency (soft, firm, or hard), symmetry, and the presence of nodules.
Anterior Approach.
This is an alternate method of palpating the thyroid, but it is more awkward to perform, especially for a
beginning examiner. Stand facing the person. Try to identify the isthmus by placing your thumb 3 cm below the
thyroid cartilage prominence as the person swallows. Then, ask him or her to tip the head forward and to the
right. Use your right thumb to displace the trachea slightly to the person’s right. Hook your left thumb and
fingers around the sternomastoid muscle. Feel for lobe enlargement as the person swallows (Fig. 14.15).
14.15
Auscultate the Thyroid
If the thyroid gland is enlarged, auscultate it for the presence of a bruit. This is a soft, pulsatile, whooshing, blowing
sound heard best with the bell of the stethoscope. The bruit is not present normally.
A bruit occurs with accelerated
or turbulent blood flow,
indicating hyperplasia of the
thyroid (e.g.,
hyperthyroidism).
DEVELOPMENTAL COMPETENCE
Infants and Children
Skull
Measure an infant’s head size with measuring tape at each visit up to age 2 years, then annually up to age 6 years.
(Measurement of head circumference is presented in detail in Chapter 9.)
Note an abnormal increase in
head size or failure to grow.
The newborn’s head measures about 32 to 38 cm (average around 34 cm) and is 2 cm larger than chest
circumference. At age 2 years both measurements are the same. During childhood the chest circumference grows to
exceed head circumference by 5 to 7 cm.
Microcephalic—head size less
than norms for age.
Macrocephalic—an enlarged
head or head rapidly
increasing in size (e.g.,
hydrocephalus [increased
cerebrospinal fluid]).
Observe the infant’s head from all angles, not just the front. The contour should be symmetric. Some racial variation
occurs in normal head shapes.
Frontal bulges, or “bossing,”
occur with prematurity or
rickets.
Two common variations in the newborn cause the shape of the skull to look markedly asymmetric. A caput
succedaneum is edematous swelling and ecchymosis of the presenting part of the head caused by birth trauma (Fig.
14.16). It feels soft, and it may extend across suture lines. It gradually resolves during the first few days of life and
needs no treatment.
375
14.16 Caput succedaneum. (Murray and McKinney, 2014.)
A cephalhematoma is a subperiosteal hemorrhage, which is also a result of birth trauma (Fig. 14.17, A). It is soft,
fluctuant, and well defined over one cranial bone because the periosteum (i.e., the covering over each bone) holds
the bleeding in place. It appears several hours after birth and gradually increases in size. No discoloration is present,
but it looks bizarre; parents need reassurance that it will be resorbed during the first few weeks of life without
treatment. Rarely a large hematoma may persist to 3 months.
14.17 A, Cephalhematoma. (Murray and McKinney, 2014.)
An infant with
cephalhematoma is at greater
risk for jaundice as the red
blood cells within the
hematoma are broken down
and reabsorbed (Fig. 14.17,
As you palpate the newborn’s head, the suture lines feel like ridges. By 5 to 6 months they are smooth and not
palpable.
Sutures palpable when the
child is older than 6 months.
A newborn’s head may feel asymmetric, and the involved ridges more prominent because of molding of the cranial
bones during engagement and passage through the birth canal. Molding is overriding of the cranial bones; usually
the parietal bone overrides the frontal or occipital bone. Reassure parents that this lasts only a few days or a week.
Babies delivered by cesarean section are noted for their evenly round heads.
Marked asymmetry, as in
craniosynostosis, is a severe
deformity caused by premature
closure of the sutures. This
causes a distinctive head shape
(see Table 14.2, p. 267) that
376
correlates with the specific
closed suture.
Also, positional molding (positional plagiocephaly) may occur as the infant continually sleeps in the recommended
position on the back to decrease the incidence of sudden infant death syndrome (SIDS). This is a flattening of the
dependent cranial bone, the occiput, in an infant who did not have occipital flatness at birth. Inspection from behind
shows a normal-appearing head shape with even horizontally placed ears. Inspection from the top shows a flat side
of the occiput with the ear on that side displaced anteriorly, and the ear may fold forward. Head circumference is
normal. (Note patient teaching on p. 262.)
Marked plagiocephaly (see
Table 14.2) requires a
custom-shaped helmet to
afford room for brain
growth in the flattened
area while moderating
growth in other areas.
Used before sutures fuse.
Flattening also occurs with
rickets.
Gently palpate the skull and fontanels while the infant is calm and somewhat in a sitting position (crying, lying
down, or vomiting may cause the anterior fontanel to look full and bulging). The skull should feel smooth and fused
except at the fontanels. The fontanels feel firm, slightly concave, and well defined against the edges of the cranial
bones. You may see slight arterial pulsations in the anterior fontanel.
A true tense or bulging
fontanel occurs with acute
increased intracranial
pressure.
Depressed and sunken
fontanels occur with
dehydration or
malnutrition.
Marked pulsations occur
with increased intracranial
pressure.
The posterior fontanel may not be palpable at birth. If it is, it measures 1 cm and closes by 1 to 2 months. The
anterior fontanel may be small at birth and enlarge to 2.5 cm × 2.5 cm. A large diameter of 4 to 5 cm occasionally
may be normal under 6 months. A small fontanel usually is normal. The anterior fontanel closes between 9 months
and 2 years. Early closure may be insignificant if head growth proceeds normally.
Delayed closure or larger-
than-normal fontanel size
occurs with
hydrocephalus, Down
syndrome,
hypothyroidism, or rickets.
A small fontanel is a sign
of microcephaly, as is early
closure.
Note the infant’s head posture and head control. The infant can turn the head side to side by 2 weeks and shows the
tonic neck reflex when supine and the head is turned to one side (extension of same arm and leg, flexion of
opposite arm and leg) (Fig. 14.18). The tonic neck reflex disappears between 3 and 4 months, and then the head is
maintained in the midline. Head control is achieved by 4 months, when the baby can hold the head erect and steady
when pulled to a vertical position. (See Chapters 23 and 24 for further details.)
14.18 Tonic neck reflex.
Tonic neck reflex beyond 5
months may indicate brain
damage.
In children head tilt occurs
with habit spasm, poor
vision, and brain tumor.
Head lag after 4 months
may indicate mental or
motor retardation.
Face
Check facial features for symmetry, appearance, and presence of swelling. Note symmetry of wrinkling when the
infant cries or smiles (e.g., both sides of the lips rise, and both sides of forehead wrinkle). Children love to comply
when you ask them to “make a face.” Normally, no swelling is evident. Parotid gland enlargement is seen best
when the child sits and looks up at the ceiling; the swelling appears below the angle of the jaw.
Unilateral immobility indicates
nerve damage (central or
peripheral) (e.g., note angle of
mouth droop on paralyzed
side).Some facies are
characteristic of congenital
abnormalities or chronic
allergy. See Table 14.2, p. 267
Neck
An infant’s neck looks short; it lengthens during the first 3 to 4 years. You can see the neck better by supporting the
infant’s shoulders and tilting the head back a little. This positioning also enhances palpation of the trachea, which is
buried deep in the neck. Feel for the row of cartilaginous rings in the midline or just slightly to the right of midline.
A short neck or webbing (loose
fanlike folds) may indicate
congenital abnormality (e.g.,
Down or Turner syndrome), or
it may occur alone.
Assess muscle development with gentle passive ROM. Cradle the infant’s head with your hands and turn it side to
side and test forward flexion, extension, and rotation. Note any resistance to movement, especially flexion. Ask a
child to actively move through the ROM, as you would an adult.
Head tilt and limited ROM
occur with torticollis
(wryneck) or from
sternomastoid muscle
injury during birth or a
congenital defect.
Resistance to flexion
(nuchal rigidity) and pain
on flexion suggest
meningitis.
During infancy cervical lymph nodes are not palpable normally. But a child’s lymph nodes are—they feel more Cervical nodes >1 cm are
377
prominent than an adult’s until after puberty, when lymphoid tissue begins to atrophy. Palpable nodes less than 3
mm are normal. They may be up to 1 cm in size in the cervical and inguinal areas but are discrete, move easily, and
are nontender. Children have a higher incidence of infection, so you can expect a greater incidence of inflammatory
adenopathy. No other mass should occur in the neck.
considered enlarged.
Thyroglossal duct cyst—
cystic lump high up in
midline, tense, nontender,
freely movable, and rises
up when swallowing.
Supraclavicular nodes
enlarge with Hodgkin
lymphoma.
The thyroid gland is difficult to palpate in an infant because of the short, thick neck. The child’s thyroid may be
palpable normally.
Special Procedures
Percussion.
With an infant, you may directly percuss with your plexor finger against the head surface. This yields a
resonant or “cracked pot” sound, which is normal before closure of the fontanels.
The sound occurs with
hydrocephalus from separation
of cranial sutures (Macewen
sign).
Auscultation.
Bruits are common in the skull in children younger than 4 or 5 years or in children with anemia. They are
systolic or continuous and are heard over the temporal area.
After 5 years of age, bruits
indicate increased intracranial
pressure, aneurysm, or
arteriovenous shunt.
The Pregnant Woman
During the second trimester chloasma may show on the face. This is a blotchy, hyperpigmented area over the
cheeks and forehead that fades after delivery. The thyroid gland may be palpable normally during pregnancy.
The Aging Adult
The temporal arteries may look twisted and prominent. In some aging adults a mild rhythmic tremor of the head
may be normal. Isolated head tremors are benign and include head nodding (as if saying yes or no) and tongue
protrusion. If some teeth have been lost, the lower face looks unusually small, with the mouth sunken in.
Painful to palpation with giant
cell arteritis, an inflammatory
condition affecting older
adults, with peak incidences
between 70-90 years.16
The neck may show an increased anterior cervical (concave or inward) curve when the head and jaw are extended
forward to compensate for kyphosis of the spine. During the examination, direct the older adult to perform ROM
slowly; he or she may experience dizziness with side movements. An older adult may have prolapse of the
submandibular glands, which could be mistaken for a tumor. But drooping submandibular glands feel soft and are
present bilaterally.
Many older adults have low-lying thyroid glands that are impossible to palpate. The gland lies behind the
sternomastoid muscles and clavicles.
378
Health Promotion and Patient Teaching
(To the parents of a newborn.) “Because your baby sleeps flat on the back, I would like to teach you about
tummy time during the day; place the baby on his or her tummy while awake and supervised.” This helps
prevent the development of flat spots (positional plagiocephaly) on the back of the head and helps
strengthen head, neck, and shoulder muscles. A newborn can be prone on the parent’s lap 2-3 times
a day for a few minutes, with a gradual increase to 20 minutes a day on the floor for a 3- to 4-
month-old.
(To young athletes and parents of athletes.) “We want you to stay safe in your sport, and most athletes
and parents do not know the signs of concussion. A concussion is a direct blow to the head, causing the brain
inside to rattle back and forth on its attachments. Serious signs of concussion are forgetfulness of recent
events, loss of consciousness, and mental cloudiness. Other signs are headache, nausea and vomiting, loss of
balance, and blurred vision. Later signs include difficulty in concentrating, poor short-term memory, slow
reaction time, and irritability.”9 Young athletes are more susceptible to concussion because of thinner
cranial bones, larger head-to-body ratio, immature central nervous system, and larger subarachnoid
space in which the brain can rattle. A detailed history with evidence of direct impact helps with
diagnosis. After a concussion a graduated return to play is best. Recovery is a stepwise progression
with 24 hours or more in each step: complete physical and brain rest; light aerobic exercise
(walking, swimming, stationary bike); sport-specific exercise that is nonimpact, such as running in
soccer; noncontact training drills; full-contact “controlled” practice after medical clearance; and then
return to normal game play.9 The U.S. Centers for Disease Control and Prevention (CDC) has
created online courses called HEADS UP: Concussion in Youth Sports, designed for health care
professionals and youths, parents, and coaches. This material is easily accessed at
https://www.cdc.gov/headsup/policy/index.html.
379
https://www.cdc.gov/headsup/policy/index.html
Documentation and Critical Thinking
Sample Charting
Subjective
Denies any unusually frequent or severe headache; no history of head injury, dizziness, or
syncope; no neck pain, limitation of motion, lumps, or swelling.
Objective
Head: Normocephalic, no lumps, no lesions, no tenderness, no trauma.
Face: Symmetric, no drooping, no weakness, no involuntary movements.
Neck: Supple with full ROM, no pain. Symmetric, no cervical lymphadenopathy or masses.
Trachea midline, thyroid not palpable. No bruits.
Assessment
Normocephalic, atraumatic, and symmetric head and neck
Clinical Case Study 1
F.V. is a 57-year-old insurance executive who is in his 4th postoperative day after a transurethral
resection of the prostate gland. He also has chronic hypertension, managed by oral
hydrochlorothiazide, exercise, and a low-salt diet.
Subjective
Complaining of dizziness, a light-headed feeling that occurred on standing and cleared on
sitting. States, “I’m afraid of falling.” No previous episodes of dizziness. Denies palpitations,
nausea, or vomiting. States urine pink-tinged as it was yesterday, with no red blood. No
pain medications today. On 2nd day of same antihypertensive medication he took before
surgery.
Objective
Vital signs: BP 142/88 mm Hg RA sitting, 94/58 mm Hg RA standing. Pulse 94 bpm sitting and
standing, regular rhythm, no skipped beats. Temp 98.6° F (37° C). Color tannish-pink, no
pallor, skin warm and dry.
Neuro: Alert and oriented to person, place, and time. Speech clear and fluent. Moving all
extremities, no weakness. No nystagmus, no ataxia, past-pointing test normal. Romberg
sign negative (normal). Intake/output in balance. Urine faint pink-tinged, no clots.
Lab: Hematocrit 45%, serum chemistries normal.
Assessment
Orthostatic hypotension
Presyncope
Potential for falls
Clinical Case Study 2
380
A.B. is a 33-year-old female civil engineer with no known health problems, on no medication,
taking a multivitamin daily.
Subjective
Delivered a healthy baby girl 13 months PTA, not breastfeeding, baby sleeps through the
night. A.B.’s menses regular since delivery but reports that the flow is heavy. A.B. reports
that she feels depressed, is unable to lose weight despite efforts, has severe fatigue,
reporting “some days I feel like I can’t even lift my arms,” weakness (hard to open a jar). She
also reports brittle nails, constipation, and an increased sensitivity to cold.
Objective
Vital signs: BP 118/88 mm Hg. Temp 96.9° F (36.1° C); Pulse 62 bpm regular. Resp 12/min.
General appearance: Skin cool, pale, and dry. Nails appear brittle but kempt.
Neck: Thyroid enlarged on palpation but no nodules. No lymphadenopathy.
Lungs: Clear and equal bilaterally.
Heart: S1 S2 regular, no murmurs or extra heart sounds.
Lab: TSH 6.29 MIU/mL (range 0.47-4.68 MIU/mL), free T4: 0.9 ng/dL (range 0.8-2.2 ng/dL)
Assessment
Hypothyroidism by lab results
Fatigue R/T hypothyroidism
Clinical Case Study 3
L.M. is a 36-year-old female auto plant worker here today for mild abdominal pain, hot flashes,
palpitations, and anxiety, reporting, “I’m going to jump out of my skin.”
Subjective
Has been experiencing the previous symptoms for 3 months along with mild hand tremors,
increased appetite, weight loss, heat intolerance, poor concentration, and difficulty sleeping.
For the past month, L.M. has noticed that her eyes feel dry and irritated. She reports
menstrual periods that are “not regular anymore.” Last menstrual period 2 weeks PTA,
scant flow.
Objective
Vital signs: BP 90/60 mm Hg. Temp: 99.5° F (37.5° C). Pulse 145 bpm and irregular. Resp
24/min. Cardiac monitor located in office shows atrial fibrillation.
Eyes: White sclera shows between iris and upper/lower lids when L.M. looks down. Staring,
unblinking appearance.
Skin: Warm, moist, smooth. Perspiration evident.
Neck: Moderately enlarged thyroid with no nodules. No lymphadenopathy.
Heart: S1 S2 irregularly irregular with midsystolic murmur grade 2/6 at left lower sternal
border.
Lungs: Clear and equal bilaterally.
Abdomen: Soft, no masses or tenderness. Active bowel sounds.
DTRs: Brisk ankle jerk. Other DTRs 2+ and = bilaterally.
381
Lab: Serum T4 18.5 mcg/dL; TSH undetectable.
Assessment
Hyperthyroidism—Graves disease
Clinical Case Study 4
A.M. is a 5-year-old boy who presents to the clinic with his father. The family adopted a dog from
the animal shelter 8 months PTA.
Subjective
A.M.’s father reports that A.M. has had “sneezing fits,” a runny nose, and coughing for the
past few months and that it seems better when A.M. is at school. Father states, “He just
won’t stop rubbing his nose and eyes.”
Objective
Vital signs: Temp 98.6° F (37° C). BP 93/60 mm Hg (sitting). Pulse 90 bpm. Resp 24/min (at
rest, open-mouthed).
General appearance: Alert and active child who is smiling and talkative.
HEENT: Normocephalic, no lumps, no lesions. Palpable anterior cervical lymph nodes (1
mm), discrete, move easily, nontender. Light-blue areas in skin under eyes, creasing present
on palpebrae inferior and superior to the tip of nose. Minimal fluid in middle ear, denies
tenderness to palpation of sinus cavities; swollen turbinates bilat, and consistently sniffles
and clears throat. Reddened posterior pharynx exudate present.
Cardiovascular: No murmurs or abnormal heart sounds.
Respiratory: Breath sounds = bilat, expiratory wheezing present bilat that clears with cough.
Assessment
Allergic rhinitis R/T newly obtained household pet
Needs health teaching regarding allergies
382
Abnormal Findings
TABLE 14.1
Primary Headaches (Diagnosed by Patient History With No Abnormal Findings in
Physical Examination or Laboratory Testing)
Tension Migraine Cluster
Definition Headache (HA) of musculoskeletal
origin; may be a mild-to-moderate, less
disabling form of migraine
HA of genetically transmitted vascular
and trigeminal nerve origin; HA plus
prodrome, aura, other symptoms; 2-3
times as common in women as in men3
Rare HA that is intermittent, excruciating,
unilateral, with autonomic signs
Location Usually both sides, across frontal,
temporal, and/or occipital region of head:
forehead, sides, and back of head
Commonly one-sided but may occur on
both sides
Pain is often behind the eyes, the
temples, or forehead
Always one-sided
Often behind or around the eye, temple,
forehead, cheek
Character Bandlike tightness, viselike
Nonthrobbing, nonpulsatile
Throbbing, pulsating Continuous, burning, piercing,
excruciating
Duration Gradual onset, lasts 30 minutes to days Rapid onset, peaks 1-2 hr, lasts 4-72 hr,
sometimes longer
Abrupt onset, peaks in minutes, lasts 45-
90 min
Quantity
and severity
Diffuse, dull aching pain
Mild-to-moderate pain
Moderate-to-severe pain Can occur multiple times a day, in
“clusters,” lasting weeks
Severe, stabbing pain
Timing Situational, in response to overwork,
posture
≈2 per month, last 1-3 days
≈1 in 10 patients have weekly
headaches
1-2/day, each lasting to 2 hr for 1 to 2
months; then remission for months or
years
Aggravating
symptoms
or triggers
Stress, anxiety, depression, poor posture
Not worsened by physical activity
Hormonal fluctuations (premenstrual)
Foods (e.g., alcohol, caffeine, MSG,
nitrates, chocolate, cheese)
Hunger
Letdown after stress
Sleep deprivation
Sensory stimuli (e.g., flashing lights or
perfumes)
Changes in weather
Physical activity
Exacerbated by alcohol, stress, daytime
napping, wind or heat exposure
Associated
symptoms
Fatigue, anxiety, stress
Sensation of a band tightening around
head, of being gripped like a vise
Sometimes photophobia or phonophobia
Aura (visual changes such as blind
spots or flashes of light, tingling in an
arm or leg, vertigo)
Prodrome (change in mood, behavior,
hunger, cravings, yawning)
Nausea, vomiting, photophobia,
phonophobia, abdominal pain
Person looks sick
Family history of migraine
Ipsilateral autonomic signs: Nasal
congestion or runny nose, watery or
reddened eye, eyelid drooping, miosis
Feelings of agitation
Relieving
factors,
efforts to
treat
Rest, massaging muscles in area, NSAID
medication
Lie down, darken room, use eyeshade,
sleep, take NSAID early, try to avoid
opioid
Need to move, pace floor
Images © Pat Thomas, 2014.
*For a comparison with sinusitis, see Table 17.1, p. 367.
TABLE 14.2
Pediatric Abnormalities
383
Hydrocephalus Down Syndrome
Obstruction of drainage of cerebrospinal fluid results in excessive accumulation, increasing
intracranial pressure, and enlargement of the head. The face looks small compared with the
enlarged cranium. The increasing pressure also produces dilated scalp veins, frontal
bossing, and downcast or “setting sun” eyes (sclera visible above iris). The cranial bones
thin, sutures separate, and percussion yields a “cracked pot” sound (Macewen sign).
This is the most common chromosomal aberration
(trisomy 21). Head and face characteristics may include
upslanting eyes with inner epicanthal folds; flat nasal
bridge; small, broad, flat nose; protruding, thick
tongue; ear dysplasia; short, broad neck with webbing;
and small hands with single palmar crease. Child also
has mental disability, often congenital heart
deformities. Educational services in many U.S. areas
will maximize child’s potential.
Plagiocephaly Craniosynostosis
Positional or deformational plagiocephaly has increased dramatically since the “Back to
Sleep” campaign started in 1992 to prevent SIDS. It is asymmetry of the cranium when seen
from the top caused by a positional preference. It is not associated with premature closing of
cranial sutures, and growth of the brain proceeds normally. This can be mitigated by
“tummy time,” when the parent places the infant prone for awake playing. Physical therapy
and corrective headbands are further treatments.
Premature closing of one or multiple cranial sutures
(shown above) results in a malformed head and a
cosmetic deformity. Mechanisms involve genetic
mutations coding structural proteins or growth factor
receptors. Severe deformities cannot contain the brain,
eyes, and optic nerves inside the cranial vault, and
hypoplasia of the face results, warranting surgery.
Atopic (Allergic) Facies
Children with chronic allergies often develop characteristic facial features. These include
exhausted face, blue shadows below the eyes (“allergic shiners”) from sluggish venous
return; a double or single crease on the lower eyelids (Morgan lines); central facial pallor;
and open-mouth breathing (allergic gaping), which can lead to malocclusion of the teeth
and malformed jaw because the child’s bones are still forming.
384
Fetal Alcohol Spectrum Disorders (FASD)
Alcohol is teratogenic to the developing fetus, resulting in severe cognitive and psychosocial impairment and changes in facial and brain structure.
The incidence is increasing in the United States, even with public warnings to avoid alcohol during pregnancy. Characteristic facies include narrow
palpebral fissures, epicanthal folds, thin upper lip, and midfacial hypoplasia. These malformations may be recognizable at birth but more so during
childhood. FASDs include a wide range of neurologic and behavioral deficits,8 even without facial malformations. Infants often have smaller head
circumference, decreased birth weight and length, feeding problems, and irritability. Children may exhibit intrusive talking, inattention, poor
abstract reasoning, and problems with independent activities of daily living.15 The severity of FASDs increases with the amount of alcohol consumed
during pregnancy. This is now the leading preventable cause of intellectual disability, learning disability, and birth defects.13
Allergic Salute and Crease
The transverse line on the nose is also a feature of chronic allergies. It is formed
when the child chronically uses the hand to push the nose up and back (the
“allergic salute”) to relieve itching and free swollen turbinates, which allow air
passage.
385
See Illustration Credits for source information.
TABLE 14.3
Swellings on the Head or Neck
Congenital Torticollis Simple Diffuse Goiter (SDG)
A hematoma in one sternomastoid muscle, probably injured by intrauterine malposition,
results in head tilt to one side and limited neck ROM to the opposite side. You feel a firm,
discrete, nontender mass in mid-muscle on the involved side. This requires treatment, or the
muscle can become fibrotic and permanently shortened with permanent limitation of ROM,
asymmetry of the head and face, and visual problems from a nonhorizontal position of the
eyes.
Endemic goiter, a chronic enlargement of the thyroid
gland, is common in wide regions of the world
(especially mountainous regions) where the soil is low
in iodine. Iodine is an essential element in the
formation of thyroid hormones.
Thyroid—Multinodular Goiter (MNG)
Multiple nodules usually indicate inflammation or
a multinodular goiter rather than a neoplasm.
However, suspect any rapidly enlarging or firm
nodule. Refer all patients with a nodule for
ultrasonography.
Single Nodule (not illustrated): Thyroid nodules
are palpable in 1% to 5% of ambulatory care
patients but can be identified in 50% of ultrasound
studies.10 Over 95% of these are benign. Suspect
any painless, rapidly growing nodule, especially a
single nodule in a young person. Cancerous
nodules usually are hard and fixed to surrounding
structures. At increased risk are females; persons
with a history of goiter or nodules, or family
history of thyroid cancer1; size >4 cm; and persons
with a history of radiation exposure, especially in
childhood.5
Pilar Cyst (Wen)
This is a smooth, firm, fluctuant swelling on the scalp
that contains sebum and keratin. Tense pressure of the
contents causes overlying skin to be shiny and taut. It
is a benign growth.
386
Parotid Gland Enlargement
Rapid painful inflammation of the parotid occurs with
mumps. Mumps is a contagious viral infection of the
salivary glands preventable by a vaccine. Parotid
swelling also occurs with blockage of a duct, abscess,
or tumor. Note swelling anterior to lower ear lobe.
Stensen duct obstruction can occur in aging adults
dehydrated from diuretics or anticholinergics.
ROM, Range of motion.
See Illustration Credits for source information.
TABLE 14.4
Thyroid Hormone Disorders
387
The hypothalamic-pituitary-thyroid axis regulates the production of thyroid hormones by a negative feedback system, much like the thermostat that
guides your household furnace. (1) The hypothalamus secretes thyrotropin-releasing hormone (TRH), which (2) acts on the anterior pituitary to
secrete thyroid-stimulating hormone (TSH), which (3) directs the thyroid gland to produce T3 and T4 hormones. When T3 and T4 hormones are high
in the bloodstream (“hot” like a furnace), they (4) direct the pituitary and hypothalamus to shut off their signaling hormones. That is the negative
feedback. When T3 and T4 hormone levels are low (thyroid is like a cold furnace), the pituitary sends out increasing TSH to stimulate new
production of T3 and T4 hormones. Your body metabolism is most comfortable in a healthy balance of hormone levels.
Graves Disease (Hyperthyroidism) Myxedema (Hypothyroidism)
An autoimmune disease with increased production of thyroid hormones
causes an increased metabolic rate, just like ramping up the furnace. This
is manifested by goiter, eyelid retraction, and exophthalmos (bulging
eyeballs). Symptoms include nervousness, fatigue, weight loss, muscle
cramps, and heat intolerance. Signs include forceful tachycardia;
shortness of breath; excessive sweating; fine muscle tremor14; thin silky
hair; warm, moist skin; infrequent blinking; a staring appearance; and
brisk ankle jerks.
A deficiency of thyroid hormone means that the thyroid furnace is
cold. This reduces the metabolic rate and, when severe, causes a
nonpitting edema or myxedema. Usual cause is Hashimoto
thyroiditis. Symptoms include fatigue and cold intolerance. Signs
include puffy, edematous face, especially around eyes (periorbital
edema); puffy hands and feet; coarse facial features; cool, dry
skin; dry, coarse hair and eyebrows; slow reflexes; and sometimes
thick speech.
See Illustration Credits for source information.
TABLE 14.5
Abnormal Facies With Chronic Illness
388
Acromegaly Cushing Syndrome
Excessive secretion of growth hormone from the pituitary gland after puberty
creates an enlarged skull and thickened cranial bones. Note the elongated head,
massive face, overgrowth of nose and lower jaw, heavy eyebrow ridge, and coarse
facial features.
With excessive secretion of adrenocorticotropic hormone
(ACTH) and chronic steroid use, the person develops a
rounded, “moonlike” face; prominent jowls; red cheeks;
hirsutism on the upper lip, lower cheeks, and chin; and
acneiform rash on the chest.
Bell Palsy (Left Side) Stroke or “Brain Attack”
A lower motor neuron lesion (peripheral), producing rapid onset of cranial nerve
VII paralysis of facial muscles; almost always unilateral. This may be a reactivation
of herpes simplex virus (HSV-1) latent since childhood. Note complete paralysis of
one-half of the face; person cannot wrinkle forehead, raise eyebrow, close eyelid,
whistle, or show teeth on the left side. Usually presents with smooth forehead, wide
palpebral fissure, flat nasolabial fold, drooling, and pain behind the ear. This is
greatly improved if corticosteroids and antivirals are given within 72 hours of
onset.6
An upper motor neuron lesion (central). A stroke is an acute
neurologic deficit caused by blood clot of a cerebral vessel, as
in atherosclerosis (ischemic stroke), or a rupture in a cerebral
vessel (hemorrhagic stroke). If you suspect a stroke, ask if the
person can smile. Note paralysis of the lower facial muscles
but also note that the upper half of face is not affected because
of the intact nerve from the unaffected hemisphere. The person
is still able to wrinkle the forehead and close the eyes.
(Compare this with Bell palsy.) However, stroke requires
emergency 9-1-1 treatment. See the F.A.S.T plan in Chapter 24
Parkinson Syndrome Cachectic Appearance
A deficiency of the neurotransmitter dopamine and degeneration of the substantia
nigra of the basal ganglia in the brain. The immobility of features produces a face
that is flat and expressionless, “masklike,” with elevated eyebrows, staring gaze, oily
skin, and drooling.
Accompanies chronic wasting diseases such as cancer,
dehydration, and starvation. Features include sunken eyes;
hollow cheeks; and exhausted, defeated expression.
See Illustration Credits for source information.
389
Summary Checklist: Head, Face, and Neck, Including
Regional Lymphatics Examination
1. Inspect and palpate the skull
General size and contour
Note any deformities, lumps, tenderness
Palpate temporal artery, temporomandibular joint
2. Inspect the face
Facial expression
Symmetry of movement (cranial nerve VII)
Any involuntary movements, edema, lesions
3. Inspect and palpate the neck
Active ROM
Enlargement of salivary glands, lymph nodes, thyroid gland
Position of trachea
4. Auscultate thyroid (if enlarged) for bruit
390
References
1. American Cancer Society (ACS). [Cancer facts & figures 2017]
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-
statistics/2017/ ; 2017.
2. Busko A, Hubbard Z, Zakrison T. Motorcycle-helmet laws and public health. N
Engl J Med. 2017;376(13):1208–1209.
3. Charles A. Migraine. N Engl J Med. 2017;377(6):553–560.
4. Copstead L, Banasik J. Pathophysiology. 6th ed. Elsevier: St. Louis; 2019.
5. Fagin JA, Wells SA. Biologic and clinical perspectives on thyroid cancer. N Engl J
Med. 2016;375(11):1054–1067.
6. Hernandez JM, Sherbino J. Do antiviral medications improve symptoms in the
treatment of Bell’s palsy? Ann Emerg Med. 2017;69(3):364–365.
7. Hogue JD. Office evaluation of dizziness. Prim Care Clin Office Pract.
2015;42(2):249–258.
8. Hoyme HE, Kalberg WO, Elliott AJ, et al. Updated clinical guidelines for
diagnosing fetal alcohol spectrum disorders. Pediatrics. 2016;138(2):1–18.
9. Jamault V, Duff E. Adolescent concussions; when to return to play. Nurse Pract.
2013;38(2):17–21.
10. McGee S. Evidence-based physical diagnosis. 4th ed. Elsevier: St. Louis; 2018.
11. Moriarty M, Mallick-Searle T. Diagnosis and treatment for chronic migraine.
Nurse Pract. 2016;41(6):18–32.
12. Muncie HL, Sirmans SM, James E. Dizziness: Approach to evaluation and
management. Am Fam Phys. 2017;95(3):154–162.
13. Roszel EL. Central nervous system deficits in fetal alcohol spectrum disorder.
Nurse Pract. 2015;40(4):24–33.
14. Smith TJ, Hegedus L. Graves’ disease. N Engl J Med. 2016;375(16):1552–1564.
15. Walker DS, Edwards W, Herrington C. Fetal alcohol spectrum disorders. Nurse
Pract. 2016;41(8):28–35.
16. Weyand CM, Goronzy JJ. Giant-cell arteritis and polymyalgia rheumatic. N Engl J
Med. 2014;371(1):50–56.
391
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/2017/
C H A P T E R 1 5
392
Eyes
393
Structure and Function
External Anatomy
About 1 inch in diameter, the eye is the sensory organ of vision. Humans are very visual beings.
The eyes carry visual data that are crucial for our survival, education, and pleasure. More than half
of our neocortex is involved with processing visual information.
Because this sense is so important to humans, the eye is well protected by the bony orbital cavity,
surrounded with a cushion of fat. The eyelids are like two rapid window shades that further protect
the eye from injury, strong light, and dust. The upper eyelid is the larger and more mobile one. The
eyelashes are short hairs in double or triple rows that curve outward from the lid margins, filtering
out dust and dirt.
The palpebral fissure is the elliptical open space between the eyelids (Fig. 15.1). When closed, the
lid margins approximate completely. When open, the upper lid covers part of the iris. The lower lid
margin is just at the limbus, the border between the cornea and sclera. The canthus is the corner of
the eye, the angle where the lids meet. At the inner canthus the caruncle is a small, fleshy mass
containing sebaceous glands.
15.1 (© Pat Thomas, 2006.)
Within the upper lid, tarsal plates are strips of connective tissue that give it shape (Fig. 15.2). The
tarsal plates contain the meibomian glands, modified sebaceous glands that secrete an oily
lubricating material onto the lids. This stops the tears from overflowing and helps form an airtight
seal when the lids are closed.
394
15.2
The exposed part of the eye has a transparent protective covering, the conjunctiva. The
conjunctiva is a thin mucous membrane folded like an envelope between the eyelids and the
eyeball. The palpebral conjunctiva lines the lids and is clear, with many small blood vessels. It forms
a deep recess and then folds back over the eye. The bulbar conjunctiva overlays the eyeball, with the
white sclera showing through. At the limbus, the conjunctiva merges with the cornea. The cornea
covers and protects the iris and pupil.
The lacrimal apparatus provides constant irrigation to keep the conjunctiva and cornea moist and
lubricated (Fig. 15.3). The lacrimal gland, in the upper outer corner over the eye, secretes tears. The
tears wash across the eye and are drawn up evenly as the lid blinks. They drain into the puncta,
visible on the upper and lower lids at the inner canthus. They then drain into the nasolacrimal sac,
through the -inch–long nasolacrimal duct, and empty into the inferior meatus inside the nose. A
tiny fold of mucous membrane prevents air from being forced up the nasolacrimal duct when the
nose is blown.
15.3 Lacrimal apparatus. (© Pat Thomas, 2006.)
395
Extraocular Muscles
Six muscles attach the eyeball to its orbit (Fig. 15.4, A) and serve to direct our eyes to points of our
interest. These extraocular muscles (EOMs) give the eye both straight and rotary movement. The
four straight, or rectus, muscles are the superior, inferior, lateral, and medial rectus muscles. The
two slanting, or oblique, muscles are the superior and inferior muscles.
15.4 (© Pat Thomas, 2006.)
Each muscle is coordinated, or yoked, with one in the other eye. This ensures that when the two
eyes move, their axes always remain parallel (called conjugate movement). Parallel axes are important
because the human brain can tolerate seeing only one image. Although some animals can perceive
two different pictures through each eye, humans have a binocular, single-image visual system. This
occurs because our eyes move as a pair. For example, the two yoked muscles that allow looking to
the far right are the right lateral rectus and the left medial rectus.
Movement of the EOMs (Fig. 15.4, B) is stimulated by three cranial nerves (CNs). The abducens
nerve (CN VI) innervates the lateral rectus muscle (which abducts the eye); the trochlear nerve (CN
IV) innervates the superior oblique muscle; and the oculomotor nerve (CN III) innervates all the rest
—the superior, inferior, and medial rectus and the inferior oblique muscles. Note that the superior
oblique muscle is located on the superior aspect of the eyeball; but, when it contracts, it enables the
person to look downward and inward.
Internal Anatomy
396
The eye is an asymmetric sphere composed of three concentric coats: (1) the outer fibrous sclera, (2)
the middle vascular choroid, and (3) the inner nervous retina (Fig. 15.5). Inside the retina is the
transparent vitreous body. The only parts accessible to examination are the sclera anteriorly and the
retina through the ophthalmoscope.
15.5 (© Pat Thomas, 2018.)
The Outer Layer.
The sclera is a tough, protective white covering. It is continuous anteriorly with the smooth,
transparent cornea, which covers the iris and pupil. The cornea is part of the refracting media of the
eye, bending incoming light rays to focus them on the inner retina.
The cornea is thin, transparent, and very sensitive to touch; contact with a wisp of cotton
stimulates a blink in both eyes, called the corneal reflex. The trigeminal nerve (CN V) carries the
afferent sensation into the brain, and the facial nerve (CN VII) carries the efferent message that
stimulates the blink.
The Middle Layer.
The choroid has dark pigmentation to prevent light from reflecting internally and is heavily
vascularized to deliver blood to the retina. Anteriorly the choroid is continuous with the ciliary
body and the iris. The muscles of the ciliary body control the thickness of the lens. The iris functions
as a diaphragm, varying the opening at its center, the pupil. This controls the amount of light
admitted into the retina. The muscle fibers of the iris contract the pupil in bright light and
accommodate for near vision; they dilate the pupil in dim light and accommodate for far vision. The
color of the iris varies from person to person.
The pupil is round and regular. Its size is determined by a balance between the parasympathetic
and sympathetic chains of the autonomic nervous system. Stimulation of the parasympathetic
branch, through CN III, causes constriction of the pupil. Stimulation of the sympathetic branch
dilates the pupil and elevates the eyelid. As mentioned earlier, the pupil size also reacts to the
amount of ambient light and accommodation, or focusing an object on the retina.
The lens is a biconvex disc located just posterior to the pupil. The transparent lens serves as a
refracting medium, keeping a viewed object in continual focus on the retina. Its thickness is
controlled by the ciliary body; the lens bulges for focusing on near objects and flattens for far
objects.
397
The anterior chamber is posterior to the cornea and in front of the iris and lens. The posterior
chamber lies behind the iris to the sides of the lens. These contain the clear, watery aqueous humor
that is produced continually by the ciliary body. The continuous flow of fluid serves to deliver
nutrients to the surrounding tissues and drain metabolic wastes. Intraocular pressure is determined
by a balance between the amount of aqueous produced and resistance to its outflow at the angle of
the anterior chamber.
The Inner Layer.
The retina is the visual receptive layer of the eye in which light waves are changed into nerve
impulses. It surrounds the soft, gelatinous vitreous body. The retinal structures viewed through the
ophthalmoscope are the optic disc, the retinal vessels, the general background, and the macula (Fig.
15.6).
15.6
The optic disc (or optic papilla) is the area in which fibers from the retina converge to form the
optic nerve. Located toward the nasal side of the retina, it has these characteristics: a color that
varies from creamy yellow-orange to pink; a round or oval shape; margins that are distinct and
sharply demarcated, especially on the temporal side; and a physiologic cup, the smaller circular
area inside the disc where the blood vessels exit and enter.
The retinal vessels normally include a paired artery and vein extending to each quadrant,
growing progressively smaller in caliber as they reach the periphery. The arteries appear brighter
red and narrower than the veins, and they have a thin sliver of light on them (the arterial light
reflex). The general background of the fundus varies in color, depending on the person’s skin color.
The macula is located on the temporal side of the fundus. It is a slightly darker pigmented region
surrounding the fovea centralis, the area of sharpest and keenest vision. The macula receives and
transduces light from the center of the visual field.
Visual Pathways and Visual Fields
Objects reflect light. The light rays are refracted through the transparent media (cornea, aqueous
humor, lens, and vitreous body) and strike the retina. The retina transforms the light stimulus into
nerve impulses that are conducted through the optic nerve and the optic tract to the visual cortex of
the occipital lobe.
The image formed on the retina is upside down and reversed from its actual appearance in the
outside world (Fig. 15.7) (i.e., an object in the upper temporal visual field of the right eye reflects its
image onto the lower nasal area of the retina). All retinal fibers collect to form the optic nerve, but
398
they maintain this same spatial arrangement, with nasal fibers running medially and temporal
fibers running laterally.
15.7 Visual pathways (viewed from above).
At the optic chiasm, nasal fibers (from both temporal visual fields) cross over. The left optic tract
now has fibers from the left half of each retina, and the right optic tract contains fibers only from the
right. Thus the right side of the brain looks at the left side of the world.
Visual Reflexes
Pupillary Light Reflex.
The pupillary light reflex is the normal constriction of the pupils when bright light shines on the
retina (Fig. 15.8). It is a subcortical reflex arc (i.e., we have no conscious control over it); the sensory
afferent link is CN II (the optic nerve), and the motor efferent path is CN III (the oculomotor nerve).
399
15.8
When one eye is exposed to bright light, a direct light reflex (constriction of that pupil) and a
consensual light reflex (simultaneous constriction of the other pupil) occur. This happens because the
optic nerve carries the sensory afferent message in and then synapses with both sides of the brain.
For example, consider the light reflex in a person who is blind in one eye. Stimulation of the normal
eye produces both a direct and a consensual light reflex. Stimulation of the blind eye causes no
response because the sensory afferent in CN II is destroyed.
Fixation.
Fixation is a reflex direction of the eye toward an object attracting our attention. The image is fixed
in the center of the visual field, the fovea centralis. This consists of very rapid ocular movements to
put the target back on the fovea and somewhat slower (smooth pursuit) movements to track the
target and keep its image on the fovea. These ocular movements are impaired by drugs, alcohol,
fatigue, and inattention.
Accommodation.
Accommodation is adaptation of the eye for near vision. It is accomplished by increasing the
curvature of the lens through the muscles of the ciliary body. Although the lens cannot be observed
directly, the components of accommodation that can be observed are convergence (motion toward)
of the axes of the eyeballs and pupillary constriction.
Developmental Competence
Infants and Children
At birth eye function is limited, but it matures fully during the early years. Peripheral vision is
intact in the newborn infant. The macula, the area of keenest vision, is absent at birth but is
developing by 4 months and is mature by 8 months. Eye movements may be poorly coordinated at
birth. By 3 to 4 months of age the infant establishes binocularity and can fixate on a single image
with both eyes simultaneously.
In structure the eyeball reaches adult size by 8 years. At birth the iris shows little pigment, and
the pupils are small. The lens is nearly spherical at birth, growing flatter throughout life. Its
consistency changes from that of soft plastic at birth to rigid glass in old age.
400
The Aging Adult
Changes in eye structure cause distinct facial changes in aging. Loss of skin elasticity causes
wrinkling and drooping; fat tissues and muscles atrophy; and the external eye structures appear as
on p. 300. Lacrimal glands involute, causing decreased tear production and a feeling of dryness and
burning.
On the globe itself an infiltration of degenerative lipid material shows around the limbus (see
discussion of arcus senilis, p. 300). Pupil size decreases. The lens loses elasticity, becoming hard and
glasslike. This glasslike quality decreases the ability of the lens to change shape to accommodate for
near vision, a condition termed presbyopia. By 40 years of age 50% of people have presbyopia and
need printed images magnified6; the prevalence is 83% in later years.3 By 70 years of age the
normally transparent fibers of the lens begin to thicken and yellow; this is the beginning of a
cataract.
Inside the globe the vitreous humor is not renewed continuously. Thus floaters appear from
debris that accumulates. Visual acuity diminishes gradually after 50 years and even more so after 70
years. Near vision is commonly affected because of the decreased power of accommodation in the
lens (presbyopia). In the early 40s a person may have blurred vision and difficulty reading. The
aging person also needs more light to see because of a decreased adaptation to darkness, and this
condition may affect the function of night driving. All of these changes affect safety, increase the
risk of falls and other accidental injuries, and challenge the ability to live independently.
Aging itself brings an increased risk of vision-robbing diseases. The prevalence of decreased
vision in each disease will increase even more in the coming years as the U.S. population ages. In
older adults the most common causes of decreased visual functioning are:
1. Cataract formation—a clouding of the crystalline lens partly due to ultraviolet radiation.
This is curable with lens replacement surgery, which the older person can consider when
vision changes interfere with daily activities.6 Cataract prevalence increases with age,
affecting 24.4 million Americans by age 40 years and older, and affecting half of Americans
by age 75 years.1
2. Glaucoma—an optic nerve neuropathy characterized by loss of peripheral vision, caused by
increased intraocular pressure. Age is the primary risk; over 2.7 million adults over 40 years
of age have the disease, and another 2 million do not know that they have it.1 Because
women have a longer life expectancy than men in the United States, women account for
greater numbers of age-related eye diseases. In this case, women account for 61% of those
with glaucoma.11
3. Age-related macular degeneration (AMD)—a loss of central vision caused by yellow
deposits (drusen) and neovascularity in the macula. AMD prevalence rises sharply with
older age; by age 80 years, 1 in 10 Americans suffer from late-stage AMD, with more
women than men afflicted.1
With AMD the person is unable to read books or papers, sew, or do fine work and has
difficulty distinguishing faces. When the lifestyle is oriented around these activities, loss of
central vision causes great distress. Peripheral vision is not affected; for a while the person
can manage self-care and not become completely disabled.
4. Diabetic retinopathy—the leading cause of blindness in adults 25 to 74 years of age.9 This
vision impairment results in difficulty driving, reading, managing diabetes treatment, and
other self-care. The prevalence has decreased slightly as a result of intensified prevention
measures and newer treatments, such as the injection of steroids into the vitreous and anti-
growth factor drugs.8 However, this progress could be offset by increasing obesity rates,
increased numbers of older adults, and improved detection of diabetes (see Table 15.10,
Retinal Vessel and Background Abnormalities, p. 315).
Culture and Genetics
Culturally based variability exists in the color of the iris and retinal pigmentation, with darker
irides having darker retinas behind them. Individuals with light retinas generally have better night
vision but can have pain in an environment that has too much light.
Cataracts are a leading cause of blindness worldwide, and experts estimate that 80% of cataracts
401
are preventable or curable with s